Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$4\equiv 1\pmod 3$
$\Rightarrow 4^{99}\equiv 1^{99}\equiv 1\pmod 3$
Lại có:
$4^3\equiv 1\pmod 7$
$\Rightarrow 4^{99}=(4^3)^{33}\equiv 1^{33}\equiv 1\pmod 7$
Vậy $4^{99}$ chia 3 và 7 đều dư 1
$\Rightarrow 4^{99}-1\vdots 3; 7$
$\Rightarrow 4^{99}-1=BC(3,7)\vdots BCNN(3,7)$ hay $4^{99}-1\vdots 21$
$\Rightarrow 4^{99}$ chia 21 dư 1.
À biết làm câu 2 rồi:
Áp dụng hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)\)
Ta có:
\(4^{99}=\left(4^3\right)^{33}-1+1=\left(64-1\right)\left(64^{32}+64^{31}+...+1\right)+1=21.3.\left(64^{32}+64^{31}+...+1\right)+1\)
Do \(21.3.\left(64^{32}+64^{31}+...+1\right)⋮21\)
=> 499 chia 21 dư 1
Câu 1: https://olm.vn/hoi-dap/question/219318.html
Câu 2: tôi chỉ biết làm theo cách modun đồng dư thôi