K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 10 2024

Lời giải:

$4\equiv 1\pmod 3$

$\Rightarrow 4^{99}\equiv 1^{99}\equiv 1\pmod 3$

Lại có:

$4^3\equiv 1\pmod 7$

$\Rightarrow 4^{99}=(4^3)^{33}\equiv 1^{33}\equiv 1\pmod 7$

Vậy $4^{99}$ chia 3 và 7 đều dư 1

$\Rightarrow 4^{99}-1\vdots 3; 7$

$\Rightarrow 4^{99}-1=BC(3,7)\vdots BCNN(3,7)$ hay $4^{99}-1\vdots 21$
$\Rightarrow 4^{99}$ chia 21 dư 1.

15 tháng 5 2016

499=(43)33=(b(21)-1)33=b(21)-1=b(21)+20

so su la 20

18 tháng 2 2018

À biết làm câu 2 rồi:
Áp dụng hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)\)
Ta có:
\(4^{99}=\left(4^3\right)^{33}-1+1=\left(64-1\right)\left(64^{32}+64^{31}+...+1\right)+1=21.3.\left(64^{32}+64^{31}+...+1\right)+1\)
Do \(21.3.\left(64^{32}+64^{31}+...+1\right)⋮21\)
=> 499 chia 21 dư 1

18 tháng 2 2018

Câu 1: https://olm.vn/hoi-dap/question/219318.html 
Câu 2: tôi chỉ biết làm theo cách modun đồng dư thôi

10 tháng 12 2023

.............