Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`
1.
Đặt $A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
Có:
$A+n=510$
$2^{101}-2+n=510$
$n=510+2-2^{101}=512-2^{101}$
2.
$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$
$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$
$=7+(1+7)(7^2+7^4+....+7^{20})$
$=7+8(7^2+7^4+...+7^{20)$
$\Rightarrow A$ chia 8 dư 7.
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.
A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)
\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)
B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
Ta có M có (100-1):1+1=100 số hạng
\(M=1+\left(3+3^2+3^3\right)+....+\left(3^{98}+3^{99}+3^{100}\right)\)
\(M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(M=1+3.13+...+3^{98}.13\)
\(M=1+13\left(3+...+3^{98}\right)\)
Mà 13(3+...+398) chia hết cho 13
=> M chia 13 dư 1
À biết làm câu 2 rồi:
Áp dụng hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)\)
Ta có:
\(4^{99}=\left(4^3\right)^{33}-1+1=\left(64-1\right)\left(64^{32}+64^{31}+...+1\right)+1=21.3.\left(64^{32}+64^{31}+...+1\right)+1\)
Do \(21.3.\left(64^{32}+64^{31}+...+1\right)⋮21\)
=> 499 chia 21 dư 1
Câu 1: https://olm.vn/hoi-dap/question/219318.html
Câu 2: tôi chỉ biết làm theo cách modun đồng dư thôi