Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của lê quỳnh anh - Toán lớp 6 - Học toán với OnlineMath
Gọi số có 6 chữ số giống nhau là aaaaaa
Ta có: aaaaaa = 111111 . a = 37037 . 3 . a chia hết cho 37037
Chứng tỏ 1 số có 6 chữ số giống nhau chia hết cho 37037
A = 1 + 2 + 22 + 23 + ... + 22001 + 22002 ( có 2003 số, 2003 : 3 dư 2)
A = 1 + 2 + (22 + 23 + 24) + (25 + 26 + 27) + ... + (22000 + 22001 + 22002)
A = 3 + 22.(1 + 2 + 22) + 25.(1 + 2 + 22) + ... + 22000.(1 + 2 + 22)
A = 3 + 22.7 + 25.7 + ... + 22000.7
A = 3 + 7.(22 + 25 + 22000)
Vì 7.(22 + 25 + ... + 22000) chia hết cho 7, 3 chia 7 dư 3
=> A chia 7 dư 3
A = 1 + 2 + (22 + 23 + 24) + (25 + 26 + 27) + (28 + 29 + 210) + ...+ (22010 + 22011 + 22012)
= 3 + 22(1 + 2 + 22) + 25(1 + 2 + 22) + 28(1 + 2 + 22) + ... + 22010( 1 + 2 + 22)
= 3 + 22.7 + 25.7 + 28.7 + ... + 22010.7
= 3 + 7(22 + 25 + 28 + ... + 22010)
Vậy A chia cho 7 dư 3
A = 1 + 2 + (22 + 23 + 24) + (25 + 26 + 27) + (28 + 29 + 210) + ...+ (22010 + 22011 + 22012)
= 3 + 22(1 + 2 + 22) + 25(1 + 2 + 22) + 28(1 + 2 + 22) + ... + 22010( 1 + 2 + 22)
= 3 + 22.7 + 25.7 + 28.7 + ... + 22010.7
= 3 + 7(22 + 25 + 28 + ... + 22010)
Vậy A chia cho 7 dư 3
A = 1 + 2 + ( 22 + 23 + 24 ) + .... + ( 22000 + 22001 + 22002 )
= 3 + 22 ( 1 + 2 + 4 ) + .... + 22000( 1 + 2 + 4 )
= 3 + ( 22 + .... + 22000) 7 chia 7 dư 3
Vậy A chia 7 dư 3
\(A=1+2+2^2+....+2^{2002}\)
\(\Rightarrow A=2A-A=1-2^{2003}\)
\(\Rightarrow A:7=1-2^{2003}:7\)dư 7
x + 2999 chia hết cho 997 khi x + 2999 là B(997) là ( 0; 997 ; 1994 '; 2991; 3988 ; .... )
Để x +2999 là số tự nhiên có ba chữ số khi 2999 < x + 2999 < 3999
=> x + 2999 = 3988 => x = 989
A=1+2+2^2+2^3+...+2^2002
A=1+2+(2^2+2^3+2^4)+...+(2^2000+2^2001+2^2002)
A=3+2^2.(1+2+4)+...+2^2000(1+2+4)
A=3+2^2.7+...+2^2000.7
A=3+7(2^2+2^5+...+2^2000)
Vì 7(2^2+2^5+...+2^2000) chia hết cho 7 nên A chia 7 dư 3