Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 22 + 23 +....+ 299
= (2 + 22 + 23) + .... + (297 + 298 + 299)
= 2.(1 + 2 + 4) + .... + 297.(1 + 2 + 4)
= 2.7 + ..... + 297.7
= 7.(2 + .... + 297) chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4)+23(1+2+4)+25(1+2+4)+...+297(1+2+4)
A=2.7+23.7+25.7+...+297.7
A=7(2+23+25+27+...+297)
nên biều thức trên chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4+8+16)+25(1+2+4+8+16)+....+295(1+2+4+8+16)
A=2.31+25.31+...+295.31
A=31(2+25+...+295)
vậy A chia hết cho 31 nên số dư của 31 chia A là 0
Đặt \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{2016}\)
\(\Leftrightarrow2A-A=1-2^{2016}\)( sử dụng triệt tiêu các số giống nhau còn lại \(1\)và \(2^{2016}\))
Ta thực hiên phép chia :
\(A=\frac{2^{2018}}{2^{2016}-1}\)
\(\Rightarrow A+1=\frac{2^{2018}}{2^{2016}}\)
Vậy số dư phép chia \(2^{2018}\)cho \(1+2+2^2+2^3+.....+2^{2015}\)là 1
Ta gọi số chia trong phép ti trên là A
Ta có: 2.A=2+2^2+2^3+...+2^2016
2.A-A=(2+2^2+2^3+...+2^2015+2^2016)-(2+2^2+2^3+...+2^2015+1)
=2^2016-1
biểu thức sẽ được rút gọn thành: 2^2018:(2^2016-1)
Số dư của biểu thức trên là:2^2018-(2^2018-4)=4