K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

abc + bca + acb = 777

111 . ( a + b + c ) = 7 . 111

a + b + c = 7

vì \(0< a+b+c\le27\) và a,b,c khác nhau

Từ đó ta tìm được các chữ số a,b,c khác nhau và a + b + c = 7

20 tháng 4 2018

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b=777

=111a + 111b + 111c = 777

=> 111(a+b+c) = 777

=> a+ b + c = 777 : 111

=> a+ b + c = 7

tiếp theo bn tự lm nha!

14 tháng 1 2018

ta có 
s = abc + bca + cab
=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>S = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b
=> S = 111a + 111b + 111c
=> S = 111( a+b+c )= 37 . 3( a+b + c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
                       3(a+b+c) chia hết 37
                      => a+b+c chia hết cho 37 
Điều này không xảy ra vì           1  ≤ a + b + c ≤ 27
vậy S = abc + bca + cab không phải là số chính phương

tk cho mk nha $_$

11 tháng 8 2016

Câu 2: Ta có:
abc=(bca+cab):2
=>2.abc=bca+cab
=>200a+20b+2c=101b+110c+11a
=>189a=81b+108c
=>7a=3b+4c
Tìm được 4 số: 481;629;518;592

27 tháng 3 2017

còn số 407 thì sao bạn

20 tháng 3 2016

Ta có : 3a +5 b = 8c

        => 3a +5b -8b = 8c -8b 

       => 3a- 3 b = 8.[c-b]

       => 3.[a-b] = 8.[c-b]

    => 3.[a-b] chia hết cho 8

Đang bí nghi đã

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)