K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

29 tháng 9 2018

a) Số số hạng là : ( 2014 - 4 ) : 3 + 1 = 671

S là : ( 2014 + 4 ) x 671 : 2 = 677039

b) Có nếu n là số chẵn \(\Rightarrow n⋮2\Rightarrow n\cdot\left(n+2013\right)⋮2\)

Nếu n là số lẻ \(\Rightarrow n+2013\)là số chẵn chia hết cho 2 \(\Rightarrow n\cdot\left(n+2013\right)⋮2\)

Vậy \(n\cdot\left(n+2013\right)\)luôn luôn chia hết cho 2 với mọi n ( ĐPCM )

c) \(M=2+2^2+2^3+...+2^{20}\)

\(2M=2\cdot\left(2+2^2+2^3+...+2^{20}\right)\)

\(2M=2^2+2^3+...+2^{21}\)

\(2M-M=2^{21}-2\)

Mà cứ 5 thừa số 2 thì số cuối của \(2^{21}\) sẽ lặp lại

\(\Rightarrow2^{21}\)có tận cùng là 2

\(\Rightarrow2^{21}-2\)có tận cùng là 0 chia hết cho 5

\(\Rightarrow M⋮5\)

\(3^{n+1}+3^{n+2}+3^{n+3}\)

\(=3^{n+1}\left(1+3+3^2\right)\)

\(=3^{n+1}.13⋮13\forall n\inℕ\)

19 tháng 2 2021
Con điên giúp tao bài toán nhá con chó
24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

Bài 1:

                                      Giải :

Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\)   \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)

\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)

\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)

\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)

\(\Rightarrow E⋮6\)

Do \(E⋮6\)nên \(E\div6\)dư 0

Vậy \(E\div6\)có số dư bằng \(0\)

Bài 2:

                                             Giải :

Ta có:   \(n.\left(n+2\right).\left(n+7\right)\)

     \(=\left(n^2+2n\right).\left(n+7\right)\)

     \(=n^3+2n^2+7n^2+14n\)

     \(=n^3+9n^2+14n\)

     \(=n.\left(n^2+9n+14\right)\)

10 tháng 10 2021

cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13

17 tháng 2 2020

a) Nếu n là số chẵn thì n2 là số chẵn

Số chẵn + với số chẵn sẽ có kết quả là số chẵn

Mà số chẵn + 2014 thì ra k/q là chẵn, số chẵn luôn chia hết cho 2

Trình bày nó k được ổn lắm bn ak

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Bài 2:

Với $n$ chẵn thì $n+4$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Với $n$ lẻ thì $n+7$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Bài 3:

a. 

$101\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$

$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$

Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$

b.

$a+3\vdots a+1$

$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$

$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$

$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$