Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có thể lấy ví dụ bất kỳ như:
3x-2=0 => x=\(\frac{2}{3}\)
5x-15=0 => x=3 hay x=\(\frac{3}{1}\)
Lạ nhỉ mình trả lời rồi mà
ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử
\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)
Chia hai vế cho (x+y+z khác 0) chú ý => dpcm
quái lại câu 1 đâu
(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không
chia hai vế cho abc/2
2/bc+2/ac+2/ab=2 (*)
đăt: 1/a=x; 1/b=y; 1/c=z
ta có
x+y+z=k (**)
x^2+y^2+z^2=k(***)
lấy (*)+(***),<=>(x+y+z)^2=2+k
=> k^2=2+k
=> k^2-k=2
k^2-k+1/4=1/4+2=9/4
\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)
Mình chưa test lại đâu bạn tự test nhé
A B C M N P
a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)
b) Hoàn toàn tương tự như câu a, ta có:
\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)
\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)
c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)
\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)
\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
m/n khác 0 => m khác 0 và điều kiện là n khác 0
Không biết chỗ này do bạn đánh thiếu hay đề ra vậy nên mình làm trường hợp là với (m+k)/nk (vì nếu theo trường hợp 2 là m + (k/nk) thì lược bỏ luôn không cần k nữa)
Ta có: m/n = (m+k)/nk
<=> m = (m+k)/k (rút gọn n vì ĐK n khác 0)
Với k = 0 => m = 0 (trái với giả thiết) => k khác 0
Với k khác 0: m = (m+k)k <=> mk = m+k
<=> (k-1)m = k
Với k = 1 => 0m = k => k = 0 (loại)
Với k khác 1: m = k/(k-1) = 1 + 1/(k-1)
Nếu m là số thực thì ứng với mỗi số k sẽ có 1 số thực m . còn lại n là số bất kì khác 0.
Nếu m là số nguyên thì 1/(k-1) phải là số nguyên => k-1 là ước của 1 => k-1 là 1 hoặc -1. Vì k là số tự nhiên khác 0 và 1 nên k=2.
Khi đó m=2
Còn lại n là số bất kì khác 0.