\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=k\)  và \(a+b+c=abc\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Lạ nhỉ mình trả lời rồi mà

ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử

\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)

Chia hai vế cho (x+y+z khác 0) chú ý => dpcm

17 tháng 1 2017

quái lại câu 1 đâu 

(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không

chia hai vế cho abc/2

2/bc+2/ac+2/ab=2 (*)

đăt: 1/a=x; 1/b=y; 1/c=z

ta có

x+y+z=k (**)

x^2+y^2+z^2=k(***)

lấy (*)+(***),<=>(x+y+z)^2=2+k

=> k^2=2+k

=> k^2-k=2 

k^2-k+1/4=1/4+2=9/4

\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)

Mình chưa test lại đâu bạn tự test nhé

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

14 tháng 12 2016

Có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Lại có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\cdot\frac{ayz+bxz+cxy}{abc}=1-2\cdot\frac{0}{abc}=1\)

=>đpcm

a: x-y-z=0

=>x=y+z; y=x-z; z=x-y

\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)

b: Tham khảo:

undefined

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

27 tháng 9 2017

thiếu đề kìa

27 tháng 9 2017

//olm.vn/hoi-dap/question/775639.html

vào đây xem nhé