Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
\(2^{x+2}+2^{x+1}-2^x=40\)
\(\left(3-2x\right)\left(2,4+3x\right)\left(\frac{3}{2}-2x\right)=0\)
\(2^{x+2}+2^{x+1}-2^x=40\)
\(\Rightarrow2^x\left(2^2+2-1\right)=40\)
\(\Rightarrow2^x=8\)
\(\Rightarrow x=3\)
2x+2 + 2x+1 - 2x = 40
2x.22+2x.2-2x=40
2x.(4+2-1)=40
2x.5=40
2x=8
2x=23
x=3
vậy x=3
a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)
hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)
hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)
V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)
b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)
\(\frac{y}{3}=4\Leftrightarrow y=12\)
\(\frac{z}{4}=4\Leftrightarrow z=16\)
V...
Bài 1
\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)
\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)
\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)
\(=\frac{9}{25}+\frac{8}{9}-1\)
\(=\frac{56}{225}\)
\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)
\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)
\(=1:\frac{4}{3}=\frac{3}{4}\)
Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v
\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)
\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)
\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)
\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)
\(=-\frac{1}{2}\)
Bài 1:
Mình sửa lại đề 1 chút: \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)
Số hạng trong dãy là: (101-1):2+1=51
P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101
Vì (-1)2n+1=-1 với n thuộc Z
=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)
=> P(-1)=-51
Ta có:
\(\left(\frac{3}{5}-x\right).\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\frac{3}{5}-x>0\)và \(\frac{2}{5}-x>0\)
\(\Rightarrow x>\frac{3}{5}\)và \(x>\frac{2}{5}\)
MÌNH NGHĨ VẬY, NHỚ KICK ĐÚNG CHO MÌNH NHA.......( ^ _ ^ )
\(\left(\frac{3}{5}-x\right)\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{3}{5}-x>0\\\frac{2}{5}-x>0\end{cases}}\\\orbr{\begin{cases}\frac{3}{5}-x< 0\\\frac{3}{5}-x< 0\end{cases}}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}x< \frac{3}{5}\\x< \frac{2}{5}\end{cases}}\\\orbr{\begin{cases}x>\frac{3}{5}\\x>\frac{3}{5}\end{cases}}\end{cases}}\)
A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)
A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)
A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)
A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)
A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)
A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)
2
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)
\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)
\(\frac{x-1}{x+1}=\frac{2015}{2017}\)
=>x+1=2017
=>x=2018-1
=>x=2016
Vậy x=2016
Còn bài 3 em ko biết làm em ms lớp 6
Chúc anh học tốt
Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath:bạn tham khảo.
Ta có: \(\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)(1)
\(\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)(2)
\(\left(1\right);\left(2\right)\Rightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)
Thanks bn nha !! Nka