K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

ta có pt 

<=>\(x^2+xy+2y^2+2xy-\left(x+y\right)+3=0\)

<=>\(x\left(x+y\right)+2y\left(x+y\right)-\left(x+y\right)=-3\)

<=>\(\left(x+y\right)\left(x+2y-1\right)=-3\)

đến đây thì xét nghiệm nguyên của 3 và tự giải nhé !

^_^

24 tháng 3 2018

\(x^2+2y^2+3xy-x-y+3=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam

25 tháng 12 2016

\(x^2+2y^2+3xy-2x-4y+3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)

25 tháng 12 2016

đề đúg hay sai vậy

 

24 tháng 5 2015

<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0  (1)

Coi (1) là phương trình bậc 2 ẩn x

\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8 

Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương 

<=> y2 + 4y - 8  = k2 (k nguyên)

<=> y2 + 4y + 4 - k2 = 12

<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12

=> (y + 2 + k)  \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}

y+2+k12-121-13-34-42-26-6
y+2-k1-112-124-43-36-62-2
k13/2 (L)-11/2 (L)-11/2 (L)11/2(L)-1/2(L)1/2(L)1/2(L)-1/2(L)-222-2
y        2-62-6

Vậy y = -6 hoặc y = 2

Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9

Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3

Vậy ...

 

15 tháng 4 2016

Nhân 4 vào pt trên ta được 4x2+8y2+12xy-8x-16y+12=0

          tương đương 4x2+9y2+4+12xy-8x-12y-y2-4y+8=0

                             (2x+3y-2)2 -(y+2)2 = -12

                                    (x+y-2)(x+2y)=-3

  • Ta có các hệ pt :x+y-2=3 ; x+2y=-1
  • x+2y-2= -3 ; x+2y =1

         .giải hệ rồi suy ra nghiệm (x,y)=(-3,2);(11,-6)

  •  
15 tháng 9 2019

\(y=\sqrt{x^2+2x+4}\)

\(\Leftrightarrow y^2=x^2+2x+4\)

\(\Leftrightarrow y^2=\left(x+1\right)^2+3\)

\(\Leftrightarrow\left(y-x-1\right)\left(y+x+1\right)=3\)

Đến đây bạn lập bảng ạ

16 tháng 9 2019

b) \(PT\Leftrightarrow x^2-2x+1-y^2=12\Leftrightarrow\left(x-y+1\right)\left(x+y+1\right)=12\)

Đến đây chắc là lập bảng ạ.

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).