K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2015

<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0  (1)

Coi (1) là phương trình bậc 2 ẩn x

\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8 

Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương 

<=> y2 + 4y - 8  = k2 (k nguyên)

<=> y2 + 4y + 4 - k2 = 12

<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12

=> (y + 2 + k)  \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}

y+2+k12-121-13-34-42-26-6
y+2-k1-112-124-43-36-62-2
k13/2 (L)-11/2 (L)-11/2 (L)11/2(L)-1/2(L)1/2(L)1/2(L)-1/2(L)-222-2
y        2-62-6

Vậy y = -6 hoặc y = 2

Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9

Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3

Vậy ...

 

15 tháng 4 2016

Nhân 4 vào pt trên ta được 4x2+8y2+12xy-8x-16y+12=0

          tương đương 4x2+9y2+4+12xy-8x-12y-y2-4y+8=0

                             (2x+3y-2)2 -(y+2)2 = -12

                                    (x+y-2)(x+2y)=-3

  • Ta có các hệ pt :x+y-2=3 ; x+2y=-1
  • x+2y-2= -3 ; x+2y =1

         .giải hệ rồi suy ra nghiệm (x,y)=(-3,2);(11,-6)

  •  
25 tháng 12 2016

\(x^2+2y^2+3xy-2x-4y+3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)

25 tháng 12 2016

đề đúg hay sai vậy

 

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam

4 tháng 5 2018

\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)

=> phương trình ước số

12 tháng 4 2019

Xét phương trình đầu: \(x^2-\left(3y+2\right)x+2y^2+4y=0\)(1)

Xem x là ẩn và y là tham số:

\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)

Phương trình (1) có 2 nghiệm 

\(x_1=\frac{\left(3y+2\right)-\left(y-2\right)}{2}=y+2\)

\(x_2=\frac{3y+2+\left(y-2\right)}{2}=2y\)

+) Với x =y+2 <=> y=x-2Thế vào phương trình (2) Ta có:

\(\left(x^2-5\right)^2=9\Leftrightarrow\orbr{\begin{cases}x^2-5=-3\\x^2-5=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=2\\x^2=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\sqrt{2}\\x=\pm2\sqrt{2}\end{cases}}\)

thế vào tìm y

+) Với x=2y thế vào ta có: \(\left(x^2-5\right)^2=x+5\Leftrightarrow x^4-10x^2-x+20=0\)

\(\Leftrightarrow\left(x^4-9x^2+\frac{81}{4}\right)-\left(x^2+x+\frac{1}{4}\right)=0\Leftrightarrow\left(x^2-\frac{9}{4}\right)^2-\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

Em làm tiếp nhé

20 tháng 1 2019

\(x^2+y^2=2x^2y^2\)

\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)

Do x,y bình đẳng như nhau,giả sử \(x\ge y\)

\(\Rightarrow x^2\ge y^2\)

Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)

Với x=1 thì thỏa mãn

Với x>1 thì dễ thấy KTM

Vậy....