Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi ở đây toàn mấy người lp 8 trở xuống ko ak bạn nên vô trang loigiaihay để giải đáp tốt hơn nhé
Ta có \(\Delta=m^4-8m-8\)
Để pT có nghiệm nguyên
=> \(\Delta\)là số chính phương, \(\Delta\ge0\)
+ \(m=1\)=> \(\Delta=-15\)loại
+ \(m=2\)=> \(\Delta=-8\)loại
+ \(m=3\)=> \(\Delta=49\)
=> \(x=8;x=1\)nhận
+ m=4 => \(\Delta=216\)loại
+ \(m\ge5\)
=> \(2m^2-8m-9>0\)
=> \(\left(m^2-1\right)^2< m^4-8m-8\)
Mà \(-8m-8< 0\)với \(m\inℤ^+\)
=> \(\left(m^2-1\right)^2< m^4-8m-8< \left(m^2\right)^2\)
Lại có \(m^4-8m-8\)là số chính phương
=> không có giá trị nào của m thỏa mãn
Vậy m=3
\(ĐK:\) \(x,y,z\in Z^+\)
Không mất tính tổng quát, ta giả sử \(1\le x\le y\le z\) nên từ pt đã cho suy ra
\(20\ge3x^2+x^3\ge3+x^3\)
\(\Rightarrow\) \(x^3\le17\) hay nói cách khác \(x\le2\) nên kết hợp với điều kiện ở trên suy ra \(x\in\left\{1;2\right\}\)
Ta xét các trường hợp sau đây:
\(\Omega_1:\)
Bạn xét các trường hợp và đưa ra nghiệm chính xác là \(\left(x,y,z\right)=\left(2,2,2\right)\)