K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Để tìm nghiệm của đa thức H(x) thì ta phải giải đã thức H(x) bằng 0

=> 3x^4 - 3x^2 = 0

=> x^2 ( 3x^2 - 3 ) = 0

=> x^2 = 0 hoặc 3x^2 - 3 = 0

=> x = 0 hoặc 3x^2 = 3

=> x = 0 hoặc x^2 = 1

=> x = 0 hoặc x = căn của 1

5 tháng 5 2017

xét H(x)=0

ta được: 3x^4-3x^2=0

3x^2(x^2-1)=0

suy ra: 3x^2=0 hoặc x^2-1=0

3x^2=0 x^2-1=0

suy ra: x^2=0 x^2=1

x=0 x=căn bậc hai của 1

a: P(1)=2+1-1=2

P(1/4)=2*1/16+1/4-1=-5/8

b: P(1)=1^2-3*1+2=0

=>x=1 là nghiệm của P(x)

P(2)=2^2-3*2+2=0

=>x=2 là nghiệm của P(x)

11 tháng 8 2016

4 nhé bạn

11 tháng 8 2016

bạn có thể viết cách lam ko

21 tháng 7 2021

Ta có f(x) = x(2 - 3x) + 3x2 - 5x + 9 

= 2x - 3x2 + 3x2 - 5x + 9

= 9 - 3x

b) f(x) có nghiệm <=> 9 - 3x = 0 

<=> 9 = 3x

<=> x = 3

Vậy x = 3 là nghiệm của f(x) 

17 tháng 4 2019

ta có: H(x)=0 <=> \(3x^4-3x^2\)=0

                  => \(3x^2x^2-3x^2\)=0

                 => \(3x^2\left(x^2-1\right)=0\)

                => \(\orbr{\begin{cases}3x^2=0\Rightarrow x=0\\x^2-1=0\Rightarrow x=1\end{cases}}\)

vậy x=0, x=1 là nghiệm của đa thức H(x)

17 tháng 4 2019

Ta có: Cho H(x) = 0

=> 3x4 - 3x2 = 0

=> 3x2.(x2 - 1) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x^2-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x^2=0\\x^2=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Vậyx thuộc {0; 1; -1} là nghiệm của đa thức H(x)

1 tháng 5 2016

dạ em ghi day du cho chị ạ;

muon tim nghiem cua 1 da thuc thi ta cho da thuc do =0 roi tim x

chị nho ly thuyet chu? ta co;

3x- x =x(3x - 1) =0

x1 =0

x2 = 1/3

vay da thuc co 2 nghiem do chị

1 tháng 5 2016

ngóng dài cổ ma chị chang đúng tra cong em

12 tháng 4 2018

a/ Ta có \(C\left(x\right)=2x^2+18x\)

Khi C (x) = 0

=> \(2x^2+18x=0\)

=> \(2x\left(x+9\right)=0\)

=> \(\orbr{\begin{cases}2x=0\\x+9=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-9\end{cases}}\)

Vậy C (x) có 2 nghiệm: x1 = 0; x2 = -9.

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

23 tháng 3 2022

a, \(P\left(1\right)=2-3-4=-5\)

b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)

c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0