K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n-1\right)+2}{2n+1}=\frac{n\left(2n+1\right)-2n+2}{2n+1}=n\frac{-2n+2}{2n+1}\)

vậy để biểu thức là số nguyên thì -2n+2 chia hết cho 2n+1

rồi còn lại tự làm

15 tháng 12 2016

làm câu

11 tháng 10 2020

Ta có: \(\frac{2n^3+n^2+7n+1}{2n-1}=\frac{\left(2n-1\right)\left(n^2+n+4\right)+5}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để 2n+ n+ 7n + 1 chia hết cho 2n - 1 thì \(\frac{5}{2n-1}\in\Rightarrow\Leftarrow5⋮2n-1\Rightarrow2n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng giá trị sau:

\(2n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(1\)\(0\)\(3\)\(-2\)

Vậy \(n\in\left\{1;0;3;-2\right\}\)thì 2n+ n+ 7n + 1 chia hết cho 2n - 1

11 tháng 10 2020

\(2n^3+n^2+7n+1\)

\(=\left(2n-1\right)\left(n^2+n+4\right)+5\)

\(\Rightarrow\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để vế trái nguyên thì \(2n-1\)là Ư(5).

\(\Rightarrow n=-2,0,1,3\)

23 tháng 10 2016

Ta có:

\(2n^2+5n-1⋮2n-1\)

\(\Rightarrow n\left(2n-1\right)+3\left(2n-1\right)+2⋮2n-1\)

\(\Rightarrow2⋮2n-1\)

Do \(n\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Rightarrow2n\in\left\{0;2;-1;3\right\}\)

\(n\in Z\Rightarrow n\in\left\{0;1\right\}\)

30 tháng 4 2020

Bạn xem lại đề! Theo mình mẫu số =x2+2

30 tháng 4 2020

Mình nghĩ sửa: \(B=\frac{n^4+3n^3+2n^2+6n-2}{n^2+2}\)

23 tháng 10 2018

Sử dụng phép chia đa thức \(2n^2+5n-1\)cho n-1. Ta có được

\(2n^2+5n-1=\left(n-1\right)\left(2n+7\right)+6\)

Để \(2n^2+5n-1\)chia hết cho n-1 thì 6 phải chia hết cho n-1 => n-1 là ước của 6 ,

\(n-1\in U\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)và n-1 khác 0.

Bạn tự làm tiếp nhé!

23 tháng 10 2018

Để 2n2 + 5n - 1 chia hết cho n - 1

=> 2n2 - 2n + 7n - 7 + 6 chia hết cho n - 1

2n.(n-1) + 7.(n-1) + 6 chia hết cho n - 1

(n-1).(2n+7) + 6 chia hết cho n - 1

mà (n-1).(2n+1) chia hết cho n - 1

=> 6 chia hết cho n - 1

=>  n - 1 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}

nếu n - 1 = 1 => n = 2 (TM)

...

bn tự xét tiếp nha!