\(⋮\)2n-1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Ta có: \(\frac{2n^3+n^2+7n+1}{2n-1}=\frac{\left(2n-1\right)\left(n^2+n+4\right)+5}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để 2n+ n+ 7n + 1 chia hết cho 2n - 1 thì \(\frac{5}{2n-1}\in\Rightarrow\Leftarrow5⋮2n-1\Rightarrow2n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng giá trị sau:

\(2n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(1\)\(0\)\(3\)\(-2\)

Vậy \(n\in\left\{1;0;3;-2\right\}\)thì 2n+ n+ 7n + 1 chia hết cho 2n - 1

11 tháng 10 2020

\(2n^3+n^2+7n+1\)

\(=\left(2n-1\right)\left(n^2+n+4\right)+5\)

\(\Rightarrow\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để vế trái nguyên thì \(2n-1\)là Ư(5).

\(\Rightarrow n=-2,0,1,3\)

Bài làm

a) Ta có: n3− 8n+ 2n ⋮ ( n+ 1 )

⇔ ( n+ n ) − (8n+ 8 ) + n + 8 ⋮ n+ 1

⇔ n( n+ 1 ) − 8( n2+1 ) + n + 8 ⋮ n+ 1

⇒ n + 8 ⋮  n2 + 1⇒ ( n − 8 )( n + 8 ) ⋮ n2 + 1

⇔ ( n+ 1 )   − 65 ⋮ n+ 1

⇒ 65 ⋮ n+ 1 mà dễ dàng nhận thấy n+ 1 ≥ 1 nên n+ 1 ϵ 1 ; 5 ; 13 ; 65 hay nϵ 0 ; 4 ; 12 ; 64nϵ 0 ; 4 ; 12 ; 64

⇒n ϵ − 8 ; −2 ; 0 ; 2 ; 8 
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị x = −8 ; 0 ; 2x = −8 ; 0 ; 2

# Chúc bạn học tốt #

13 tháng 11 2016

2n2 + 3n + 3 | 2n-1

- 2n2 - n | n + 2

0 + 4n +3

- + 4n -2

+ 5

Để phép chia tren là phép chia hết thì :

\(5⋮2n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

+ ) 2n - 1 = 1

2n = 2

n = 1

+ ) 2n - 1 = -1

2n = 0

n = 0

+ ) 2n - 1 = 5

2n = 6

n = 3

+ ) 2n - 1 = -5

2n = -4

n = -2

Vậy x \(\in\) { -2;3 ;1 ; 0 }

 

 

17 tháng 1 2017

(Chỉ là chia đa thức thôi mà!)

Anh giải câu b thôi, mấy câu còn lại tự làm nha.

\(2n^3+n^2+7n+1=\left(2n-1\right)\left(n^2+n+4\right)+5\)

Suy ra \(\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để vế trái nguyên thì \(2n-1\) là ước của \(5\). Giải được \(n=-2,0,1,3\)

b: \(A=\left(n+2\right)\left(n+5\right)+2010\)

TH1: n+2 chia hết cho 3;n+5 chia hết cho 3

=>(n+2)(n+5) chia hết cho 9

=>A ko chia hết cho 9

TH2: n+2 không chia hết cho3;n+5 khôg chia hếtcho3

=>(n+2)(n+5) ko chia hết cho 3

=>A không chia hết cho 9

a: \(B=\left(22+16\right)\cdot C+2011=38\cdot C+2011⋮̸19\)

1 tháng 11 2018

a) n^2.(n+1)+2n.(n+1)

= (n+1).(n^2+2n)

= n.(n+1).(n+2) chia hết cho 6 ( do 3 số liên tiếp chia hết cho 6)

b) (2n-1)^3 - (2n-1)

= (2n-1).[(2n-1)^2 - 1]

= (2n-1).(2n-1-1).(2n-1+1)

= (2n-1).2.(n-1).2n

= 4.n.(n-1).(2n-1)

mà n.(n-1) là 2 số tự nhiên liên tiếp

=> n hoặc n - 1 sẽ chia hết cho 2

=> 4.n.(n-1) sẽ chia hết cho 4.2 = 8

=> 4.n.(n-1).(2n-1) chia hết cho 8

=> (2n-1)^3 - (2n-1) chia hết cho 8

23 tháng 10 2018

2n2 + 5n - 1 | 2n - 1

2n2  - 2n      | 2n + 7

-----------------

        7n - 1

        7n - 7 

------------------

               6

Để 2n2 + 5n - 1 chia hết cho 2n - 1 thì 6 phải chia hết cho 2n - 1

Hay 2n-1 thuộc Ư(6) = { 1; 2; 3; 6; -1; -2; -3; -6 }

Ta có bảng :

2n-11236-1-2-3-6
n11,523,50-0,5-1-2,5

Vậy n thuộc { 1; 1,5; 2; 3,5; 0; -0,5; -1; -2,5 }

16 tháng 7 2018

Ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\)

Vì (2n+1) chia hết cho 2n+1 => (2n+1)(n-1) chia hết cho 2n+1

Nên để 2n2 - n + 2 chia hết cho 2n + 1 thì 3 phải chia hết cho 2n+1

=> \(2n+1\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)

Nếu 2n + 1 = 1 thì n = 0 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -1 thì n = -1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = 3  thì n = 1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -3 thì n = -2 (thỏa mãn x thuộc Z)

Vậy để 2n2 - n + 2 chia hết cho 2n + 1 <=> n = {0;-1;-2;1}

16 tháng 7 2018

ta có: 2n2 - n + 2 chia hết cho 2n + 1

=> 2n2 + n - 2n + 2 chia hết cho 2n + 1

n.(2n+1) - ( 2n + 1) + 3 chia hết cho 2n + 1

(2n+1).(n-1) + 3 chia hết cho 2n + 1

mà (2n+1).(n-1) chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=>...

1 tháng 11 2017

2n² - n + 2. │ 2n + 1 
2n² + n....... ├------------ 
------------------ I n - 1 
.......-2n + 2 
.......-2n - 1 
_____________ 


Để chia hết thì: 3 phai chia hết cho ( 2n + 1) 

hay (2n + 1) la ước của 3 
Ư(3) = {±1 ; ±3} 
______________________________ 
+) 2n + 1 = 1 <=> n = 0 
+) 2n + 1 = -1 <=> n = -1 
+) 2n + 1 = 3 <=> n = 1 
+) 2n + 1 = -3 <=> n = -2 


Vậy n ∈{0;-2 ; ±1}

1 tháng 11 2017

Ta có: 2n2 – n + 2 : (2n + 1) 

2015-10-01_000139 

Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là ±1; ± 3 

Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0 
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1 
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1 
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2 
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.

6 tháng 10 2017

Đặt : A = n4 + 2n3 - n2 -2n

Ta có : A = n4 + 2n3 - n2 -2n

A= n3.(n + 2) - n ( n + 2)

A=(n3 - n) .( n + 2)

A= n( n2 -1).( n+ 2)

A= (n - 1).n.( n +1).( n +2)

Do : (n - 1).n.( n +1).( n +2) là 4 STN liên tiếp

=> (n - 1).n.( n +1).( n +2) chia hết cho 2,3,4

Hay A= (n - 1).n.( n +1).( n +2) chia hết cho 24