K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
29 tháng 6 2024

\(a,32< 2^n< 128\)

\(=>2^5< 2^n< 2^7\)

\(=>n=6\)

Vậy...

\(b,2.16\ge2^n>4\)

\(=>2^5\ge2^n>2^2\)

\(=>n\in\left\{3;4;5\right\}\)

Vậy...

\(c,3^2.3^n=3^5\)

        \(3^n=3^5:3^2\)

        \(3^n=3^3\)

\(=>n=3\)

Vậy...

\(d,\left(2^2:4\right).2^n=4\)

     \(\left(2^2:2^2\right).2^n=4\)

                 \(1.2^n=4\)

                    \(2^n=4:1\)

                    \(2^n=4\)

              \(=>2^n=2^2\)

             \(=>n=2\)

Vậy ...

\(e,\dfrac{1}{9}.3^4.3^n=3^7\)

   \(\dfrac{1}{9}.81.3^n=3^7\)

       \(3^2.3^n=3^7\)

           \(3^n=3^7:3^2\)

           \(3^n=3^5\)

\(=>n=5\)

Vậy...

\(g,\dfrac{1}{2}.2^n+4.2^n=9.2^5\)

 \(\left(\dfrac{1}{2}+4\right).2^n=9.2^5\)

             \(\dfrac{9}{2}.2^n=9.32\)

              \(\dfrac{9}{2}.2^n=288\)

                  \(2^n=288:\dfrac{9}{2}\)

                  \(2^n=2^6\)

\(=>n=6\)

Vậy...

DT
29 tháng 6 2024

a) \(32< 2^n< 128\\ \Rightarrow2^5< 2^n< 2^7\\ \Rightarrow5< n< 7\)

Mà: \(n\inℕ^∗\)

\(\Rightarrow n=6\)

b) \(2.16\ge2^n>4\\ \Rightarrow2^1.2^4\ge2^n>2^2\\ \Rightarrow2^5\ge2^n>2^2\\ \Rightarrow5\ge n>2\)

Mà: \(n\inℕ^∗\)

\(\Rightarrow n\in\left\{5;4;3\right\}\)

c) \(3^2.3^n=3^5\\ \Rightarrow3^{n+2}=3^5\\ \Rightarrow n+2=5\\ \Rightarrow n=3\left(nhận\right)\)

 

30 tháng 11 2015

a)

1/9 . 34.3n=37

=>3-2.34.3n=37

=>3-2+4+n=37

=>-2+4+n=7

=>n=7-(-2)-4

=>n=5

 

31 tháng 5 2019

#)Giải :

\(\frac{1}{9}.3^4.3^n=3^7\)

\(\frac{1}{9}.81.3^n=3^7\)

\(9.3^n=3^7\)

\(3^2.3^n=3^7\)

\(\Rightarrow2+n=7\)

\(\Rightarrow n=5\)

       #~Will~be~Pens~#

31 tháng 5 2019

#)Giải :

\(\frac{1}{9}.27^n=3^n\)

\(\Leftrightarrow\frac{1}{9}=\frac{3^n}{27^n}\)

\(\Leftrightarrow\frac{1}{9}=\left(\frac{1}{9}\right)^n\)

\(\Leftrightarrow n=1\)

         #~Will~be~Pens~#

9 tháng 10 2015

a Ta có

1/9.3^4.3^n=3^7

=> 1/3^2.3^4.3^n=3^7

=> 3^2.3^n=3^7

=>3^2+n=3^7

=> 2+n=7

=> n=5( tick nhé)

10 tháng 2 2019

1/9 . 27^n=3^n

=1/3^2.3^3^n=3^n

=3^2.3^3=3^n

=3^5

=>n=5

17 tháng 10 2018

1)  \(32< 2^n< 128\)

\(\Rightarrow2^5< 2^n< 2^7\)

Vì  \(5< n< 7\)

Nên  \(n=6\)

Vậy \(32< 2^6< 128\)

2) \(2.16\ge2^n>4\)
\(\Rightarrow2^5\ge2^n>2^2\)

Vì  \(5\ge n>4\)

nên  \(n=5\)

Vậy   \(2.16\ge2^5>4\)

3/ Tương tự

P/S: chỉ cần đổi các số ra lũy thừa là sẽ tính được!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Kết bạn với mình nha!

Hình ảnh có liên quan

21 tháng 12 2015

a)16^n<128^4

=>(2^4)^n<(2^7)^4

=>2^4n<2^28

=>4n<28

=>n<28:4

=>n<7

=>n E {0;1;2;3;4;5;6}

b)32<2^n<128

=>2^5<2^n<2^7

=>5<n<7

=>n=6

c)2.16>2^n>4

=>2.2^4>2^n>2

=>2<2^n<2^5

=>1<n<5

=>n E {2;3;4}

tick nhé

1 tháng 11 2017

đó giúp mk đi màkhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroi

à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đóvuiok

giúp mk nhaok

cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 tháng 11 2017

những thánh giỏi toán ơi giúp mk được ko

mk năn nỉ đókhocroi

27 tháng 10 2017

giải giúp mk với mk sắp đi học rồibucminh

25 tháng 10 2017

b,32.3n=35

        3n=35: 32

         3n=33

          n=3

25 tháng 10 2017


\(a,2.16\le2^n< 4\)
\(\Rightarrow2^5\le2^n< 2^2\)
\(\Rightarrow n\in5,4,3\)
\(b,3^2.3^n=3^5\)
\(\Rightarrow3^n=3^5:3^2\)
\(\Rightarrow3^n=3^2\)
\(\Rightarrow n=2\)
\(c,\left(2^2:4\right):2^n=4\)
\(\Rightarrow1:2^n=4\)
\(\Rightarrow2^n=1:4=\frac{1}{4}\)
mà \(n\in N\)nên n ko có giá trị nào
\(d,\frac{1}{9}.3^4.3^n=3^7\)
\(\Rightarrow\left(\frac{1}{3}\right)^2.3^2.3^2.3^n=3^7\)
\(\Rightarrow3^2.3^n=3^7\)
\(\Rightarrow3^n=3^7:3^2\)
\(\Rightarrow3^n=3^5\)
\(\Rightarrow n=5\)

e,f làm tự làm tiếp nhé,mỏi tay wa

1 tháng 12 2018

a)Ta có : 5\(^5\)- 5\(^4\) + 5\(^3\)

= 53(52 - 5 + 1 )

=5. 21 

Vì 21 \(⋮\)7 nên 21 . 53\(⋮\)7

Vậy 5-54 + 53 \(⋮\)7

 Mấy câu kia b giải tương tự nhé

a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)

\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)

=>x=10

b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)

\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)

hay \(x\in\left\{0;1;2\right\}\)

c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)

\(\Leftrightarrow6-x=0\)

hay x=6