Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)
Vậy \(A_{min}=-13\Leftrightarrow x=3\)
\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
a) Ta có: \(x^2-8x+16\)
\(=x^2-2\cdot x\cdot4+4^2\)
\(=\left(x-4\right)^2\)
b) Ta có: \(16x^2+y^2-8xy\)
\(=\left(4x\right)^2-2\cdot4x\cdot y+y^2\)
\(=\left(4x-y\right)^2\)
c) Ta có: \(49a^2+4b^2+28ab\)
\(=\left(7a\right)^2+2\cdot7a\cdot2b+\left(2b\right)^2\)
\(=\left(7a+2b\right)^2\)
e) Ta có: \(\left(3x-2\right)^2-\left(3x+2\right)^2+4x^2+36\)
\(=\left[\left(3x-2\right)-\left(3x+2\right)\right]\cdot\left[\left(3x-2\right)+\left(3x+2\right)\right]+4\left(x^2+9\right)\)
\(=\left(3x-2-3x-2\right)\left(3x-2+3x+2\right)+4\left(x^2+9\right)\)
\(=-4\cdot6x+4\left(x^2+9\right)\)
\(=4\left(-6x+x^2+9\right)\)
\(=4\left(x^2-6x+9\right)\)
\(=4\left(x-3\right)^2\)
\(=\left(2x-6\right)^2\)
tại sao từ x2 - 6x + 9 lại có thể chuyển thành (x-3)2 vậy ạ? (ở câu e ấy)
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
D = -x2 + 3x - 1 = -(x2 - 3x + 9/4) + 5/4 = -(x - 3/2)2 + 5/4
Ta có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 5/4 \(\le\)5/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của D = 5/4 tại x = 3/2
E = -3x2 + 4x + 2 = -3(x2 - 4/3x + 4/9) + 10/3 = -3(x - 2/3)2 + 10/3
Ta có: -3(x - 2/3)2 \(\le\)0 \(\forall\)x
=> -3(x - 2/3)2 + 10/3 \(\le\)10/3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3
Vậy Max của E = 10/3 tại x = 2/3
F = 6x - 7x2 - 2 = -7(x2 - 6/7x + 9/49) + 5/7 = -7(x - 3/7)2 + 5/7
Ta có: -7(x - 3/7)2 \(\le\)0 \(\forall\)x
=> -7(x - 3/7)2 + 5/7 \(\le\)5/7 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/7 = 0 <=> x = 3/7
Vậy Max của F = 5/7 tại x = 3/7