Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để P nhỏ nhất thì x = 2015 hoặc 2016 hoặc 2017
xét x = 2015 thì P = 3
xét x = 2016 thì P = 2
xét x = 2017 thì P = 3
Vậy \(P_{min}\) = 2
tui mới học lớp 6 nên hok bít đúng hôk
để Bmin
=> 2017-/x-2015/ phải đạt giá trị lớn nhất
=> /x-2015/ phải đạt giá trị nhỏ nhất
mà /x-2015/ > hoặc = 0
=> /x-2015/ nhỏ nhất khi bằng 0
Ta có: x-2015=0
=>x=2015
Thế x vào biểu thức ta có
\(\frac{2016}{2017-\left\{x-2015\right\}}\)=\(\frac{2016}{2017-\left\{2015-2015\right\}}\)=\(\frac{2016}{2017-0}\)=\(\frac{2016}{2017}\)
vậy Bmin=\(\frac{2016}{2017}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\) nên x+1=0
=>x=0-1
=>x-1
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\frac{x+1}{2017}\)
\(\Leftrightarrow\frac{x+4}{2014}+1+\frac{x+3}{2015}+1=\frac{x+2}{2016}+1+\frac{x+1}{2017}+1\)
\(\Leftrightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Leftrightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
Vì: \(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
\(\Rightarrow x+2018=0\Rightarrow x=-2018\)