K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2015

= x^2 - 2x + 1 + 2y^2 - 6y + 2014

= ( x - 1 )^2 + 2( y^2 - 2.3/2.y + 9/4 - 9/4 + 1007 )

= ( x - 1 )^2 + 2[ ( y - 3/2 )^2 + 4019/4 ]

Ta có: ( x - 1 )^2 và ( y - 3/2 )^2 > hoặc = 0 với mọi x, y

=> ( x - 1 )^2 và ( y - 3/2 )^2 nhỏ nhất = 0

=> 0 + 2.0 + 2.4019/4 = 4019/2

19 tháng 8 2020

Bài làm:

a) \(P=x^2-5x=\left(x^2-5x+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\le-\frac{25}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x=\frac{5}{2}\)

Vậy \(Min_P=-\frac{25}{4}\Leftrightarrow x=\frac{5}{2}\)

19 tháng 8 2020

a) P = x2 - 5x 

         = ( x2 - 5x + 25/4 ) - 25/4

         = ( x - 5/2 )2 - 25/4

( x - 5/2 )2 ≥ 0 ∀ x => ( x - 5/2 )2 - 25/4 ≥ -25/4

Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2

=> MinF = -25/4 <=> x = 5/2

b) Q = x2 + 2y2 + 2xy - 2x - 6y + 2015 

         = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2010

         = [ ( x + y )2 - 2( x + y ) + 12 ] + ( y - 2 )2 + 2010

         = ( x + y - 1 )2 + ( y - 2 )2 + 2010

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y-1=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

=> MinQ = 2010 <=> x = -1 , y = 2

15 tháng 10 2015

SAO TOÀN LÀ TOÁN LỚP 8 KO ZẬY ZỜI!

25 tháng 12 2019
https://i.imgur.com/rO5CGyj.jpg
11 tháng 10 2020

A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Dấu "=" xảy ra khi x = -3/2

=> MinA = -9/2 <=> x = -3/2

B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinB = 1 <=> x = 1 ; y = 2

C = x2 - 2xy + 6y2 - 12x + 2y + 45

= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4

= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4

= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4

= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y

Dấu "=" xảy ra khi x = 7 ; y = 1

=> MinC = 4 <=> x = 7 ; y = 1

D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

= ( x2 + 5x - 6 )( x2 + 5x + 6 )

= ( x2 + 5x )2 - 36 ≥ -36 ∀ x

Dấu "=" xảy ra <=> x2 + 5x = 0

                        <=> x( x + 5 ) = 0

                        <=> x = 0 hoặc x = -5

=> MinD = -36 <=> x = 0 hoặc x = -5

11 tháng 10 2020

1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)

Vậy Min(A) = -9/4 khi x = -3/2

2) \(B=x^2-2x+y^2-4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Min(B) = 1 khi x = 1 và y = 2

3) \(C=x^2-2xy+6y^2-12x+2y+45\)

\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)

\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)

\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

Vậy Min(C) = 4 khi x = 7 và y = 1

4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy Min(D) = -36 khi x = 0 hoặc  x = -5

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

12 tháng 8 2018

\(D=x^2-2xy+2xy+2y^2+2x-10y+17\)

\(D=\left(x^2+2x+1\right)+2\left(y^2-5y+\frac{25}{4}\right)+\frac{7}{2}\)

\(D=\left(x+1\right)^2+2\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)

Vậy GTNN của D là \(\frac{7}{2}\)khi x = -1; y = \(\frac{5}{2}\)