Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Để hai phương trình này tương đương thì \(\left\{{}\begin{matrix}a\cdot\left(-1\right)+2=0\\2\cdot3+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-6\end{matrix}\right.\)
a: Phương trình thứ hai thiếu vế phải rồi bạn
Bài làm
a) 3x - 1 = 2x + 4
<=> x = 5
Vậy x = 5 là nghiệm phương trình.
b) x( x + 3 ) = ( 2x + 1 )( x + 3 )
<=> x( x + 3 ) - ( 2x + 1 )( x + 3 ) = 0
<=> ( x + 3 )( x - 2x - 1 ) = 0
<=> ( x + 3 )( -x - 1 ) = 0
<=> x + 3 = 0 hoặc -x - 1 = 0
<=> x = -3 hoặc x = -1
Vậy x = -3 hoặc x = -1 là tập nghiệm phương trình
c) quy đồng mẫu ra r lm, bh ngủ.
2. \(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^{2c}+3ac^2+3b^2c+3bc^2+6abc\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)-3abc\)
\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+c+b\right)+3bc\left(b+c+a\right)-3abc\)
Ta có: \(a+b+c=0\)
\(a^3+b^3+c^3+3ab.0+3ac.0+3bc.0=3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Bài 2
\(a+b+c=0\Rightarrow a=-b-c\)
\(VT=a^3+b^3+c^3=\left(-b-c\right)^3+b^3+c^3\)
\(=\left(-b\right)^3-3\left(-b\right)^2c+3\left(-b\right)c^2-c^3+b^3+c^3\)
\(=\left(-b\right)^3-3b^2c-3bc^2-c^3+b^3+c^3\)
\(=-3b^2c-3bc^2=3bc\left(-b-c\right)=3abc=VP\)
a: Thay x=3 vào pt, ta được:
\(12-2\cdot\left(1-3\right)^2=4\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)
\(\Leftrightarrow12-2\cdot4=4\left(3-m\right)\)
=>12-4m=12-8=4
=>4m=8
hay m=2
b: Thay x=1 vào pt, ta được:
\(\left(9\cdot1+1\right)\cdot\left(1-2m\right)=\left(3\cdot1+2\right)\left(3\cdot1-5\right)\)
\(\Leftrightarrow10\left(1-2m\right)=5\cdot\left(-2\right)=-10\)
=>1-2m=-1
=>2m=2
hay m=1
Hướng dẫn thôi nha bạn.
Giải:
Bài 1.
- Nhân đơn thức với đa thức: Nhân đơn thức với từng hạng tử của đa thức. (Rút gọn các hạng tử đồng dạng)
VD: Câu a)
\(2x\left(x^2-7x-3\right)\)
\(=2x.x^2-2x.7x-2x.3\)
\(=2x^3-14x^2-6x\)
- Nhân đa thức với đa thức: Nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia. (Rút gọn các hạng tử đồng dạng)
VD: Câu e)
\(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^2.x-x^2.4-2x.x+2x.4+3.x-3.4\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
Bài 2.
Áp dụng hằng đẳng thức (số 1 và số 2)
VD: \(892^2+892.216+108^2\)
\(=892^2+2.892.108+108^2\)
\(=\left(892+108\right)^2\)
\(=1000^2=1000000\)
Bài 3: Chủ yếu áp dụng hằng đẳng thức và phương pháp đặt nhân tử.
VD: Câu a)
\(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2-4=0\left(7\ne0\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Bài 4: Áp dụng hằng đẳng thức
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-x^3-54+x\)
\(\Leftrightarrow M=-27+x\)
Thay \(x=27\)
\(\Leftrightarrow M=-27+27=0\)
Vậy ...
a/\(\Leftrightarrow m\left(x-1\right)-\left(x-1\right)=-1\Leftrightarrow\left(m-1\right)\left(x-1\right)=-1\Rightarrow m-1\ne0\Leftrightarrow x\ne1\)
d/\(\Leftrightarrow m^2x-m^2-4-4mx+4m=0\Leftrightarrow m^2\left(x-1\right)-4m\left(x-1\right)=4\Leftrightarrow\left(x-1\right)m\left(m-4\right)=4\Rightarrow\left[{}\begin{matrix}m\ne0\\m\ne4\end{matrix}\right.\)