Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)
Thay x=1/3 vào phương trình \(mx+2=0\):
\(\frac{m}{3}+2=0\Leftrightarrow m=-6\)
Vậy m=-6
b) \(2x-7=0\Leftrightarrow x=\frac{7}{2}\)
Thay x=7/2 vào phương trình (m-1)x-6=0:
\(\left(m-1\right)\cdot\frac{7}{2}-6=0\Leftrightarrow m-1=\frac{12}{7}\Leftrightarrow m=\frac{19}{7}\)
Vậy m=19/7
* Về cách trình bày, tớ ko chắc chắn là đúng.
Đồng nhất, ta có
\(\left\{{}\begin{matrix}m=2\\m+1=3\end{matrix}\right.\)\(\Rightarrow m=2\)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
2. \(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^{2c}+3ac^2+3b^2c+3bc^2+6abc\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)-3abc\)
\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+c+b\right)+3bc\left(b+c+a\right)-3abc\)
Ta có: \(a+b+c=0\)
\(a^3+b^3+c^3+3ab.0+3ac.0+3bc.0=3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Bài 2
\(a+b+c=0\Rightarrow a=-b-c\)
\(VT=a^3+b^3+c^3=\left(-b-c\right)^3+b^3+c^3\)
\(=\left(-b\right)^3-3\left(-b\right)^2c+3\left(-b\right)c^2-c^3+b^3+c^3\)
\(=\left(-b\right)^3-3b^2c-3bc^2-c^3+b^3+c^3\)
\(=-3b^2c-3bc^2=3bc\left(-b-c\right)=3abc=VP\)
b: Để hai phương trình này tương đương thì \(\left\{{}\begin{matrix}a\cdot\left(-1\right)+2=0\\2\cdot3+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-6\end{matrix}\right.\)
a: Phương trình thứ hai thiếu vế phải rồi bạn