Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề như vậy hả bạn? Tìm m để pt có 2 nghiệm (có phân biệt hay không?) thỏa: \(x_1^2+2x_2\le3x_1x_2\)
\(\Delta'=\left(m-1\right)^2-m\left(m-5\right)=3m+1>0\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\frac{1}{3}\end{matrix}\right.\) (1)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=\frac{m-5}{m}\end{matrix}\right.\)
Để biểu thức bài toán có nghĩa \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne5\)
\(\frac{1}{x_1}+\frac{1}{x_2}< 3\)
\(\Leftrightarrow\frac{x_1+x_2}{x_1x_2}-3< 0\)
\(\Leftrightarrow\frac{2m-2}{m-3}-3< 0\)
\(\Leftrightarrow\frac{-m+7}{m-3}< 0\) \(\Rightarrow\left[{}\begin{matrix}m< 3\\m>7\end{matrix}\right.\)
Kết hợp (1) ta được: \(\left[{}\begin{matrix}-\frac{1}{3}< m< 3;m\ne0\\m>7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m< 1\end{matrix}\right.\)
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)
\(x_1^3+x_2^3-2\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2-2\right)=0\)
TH1: \(x_1+x_2=0\Leftrightarrow\dfrac{2\left(m+1\right)}{m}=0\Rightarrow m=-1\)
TH2: \(\left(x_1+x_2\right)^2-3x_1x_2-2=0\Leftrightarrow\left(\dfrac{2m+2}{m}\right)^2-\dfrac{3m+9}{m}-2=0\)
\(\Leftrightarrow m^2+m-4=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-1-\sqrt{17}}{2}\\m=\dfrac{-1+\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-1\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\)
Lời giải:
Để phương trình trên có hai nghiệm \(x_1,x_2\) thì trước tiên \(m\neq 0\)
\(\Delta'=1-2m>0\Leftrightarrow m<\frac{1}{2}\)
Áp dụng định lý Viete: \(x_1+x_2=\dfrac{2}{m}\). Mặt khác \(x_1+x_2=2m(m+1)\)
\(\Rightarrow \frac{2}{m}=2m(m+1)\Leftrightarrow m^3+m^2-1=0\) $(1)$
Giải PT trên, ta thấy nếu \(m\) là nghiệm $(1)$ thì \(m>\frac{1}{2}\), do đó không tồn tại $m$ thỏa mãn.
thank b nha