Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
\(y'=x^2-mx+2m\)
Hàm nghịch biến trên 1 đoạn có độ dài 3 khi và chỉ khi \(y'=0\) có 2 nghiệm pb thỏa mãn:
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-8m>0\\\left(x_1+x_2\right)^2-4x_1x_2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>8\end{matrix}\right.\\m^2-8m=9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=9\end{matrix}\right.\)
Ta có \(y'=-2x^2+2\left(m+1\right)x+2m\)
Hàm số đồng biến trên khoảng (0;2) \(\Leftrightarrow y'\ge0,x\in\left(0;2\right)\) (*)
Vì y'(x) liên tục tại x=0 và x=2 nên (*) \(\Leftrightarrow y'\ge0,x\in\left[0;2\right]\)
\(\Leftrightarrow-2x^2+2\left(m+1\right)x+2m\ge0,x\in\left[0;2\right]\)
\(\Leftrightarrow m\left(x+1\right)\ge x^2-x,x\in\left[0;2\right]\Leftrightarrow m\ge g\left(x\right),x\in\left[0;2\right]\); (trong đó \(g\left(x\right)=\frac{x^2-x}{x+1}\))
\(\Leftrightarrow m\ge Max_{\left[0;2\right]}g\left(x\right)\)
Xét hàm số \(g\left(x\right)=\frac{x^2-x}{x+1}\) trên đoạn \(\left[0;2\right]\)
\(\Rightarrow g'\left(x\right)=\frac{x^2+2x-1}{\left(x+1\right)^2}\Rightarrow g'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{2},x\in\left[0;2\right]\)
\(g\left(0\right);g\left(2\right)=\frac{2}{3};g\left(-1+\sqrt{2}\right)\Rightarrow Max_{\left(0;+\infty\right)}g\left(x\right)=\frac{2}{3}\) tại x=2
Vậy \(m\ge\frac{2}{3}\) thì hàm số đồng biến trên khoảng (0;2)
Ta có : \(y'=-2x^2+2\left(m+1\right)x+2m,\Delta'=m^2+6m+1\)
Suy ra hàm đồng biến trên khoảng (0; 2) \(\Leftrightarrow y'\ge0,x\in\left(0;2\right)\)(*)
Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow m^2+6m+1\le0\Leftrightarrow-3-2\sqrt{2}\le m\le-3+2\sqrt{2}\)
theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\) => (*) không thỏa mãn
Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow m^2+6m+1>0\Leftrightarrow m\le-3-2\sqrt{2}\) hoặc \(m\ge-3+2\sqrt{2}\) thì (*) đúng
<=> phương trình \(y'=0\) có 2 nghiệm phân biệt \(x_1;x_2\) (\(x_1\)>\(x_2\)) và thỏa mãn \(x_1\le0<2\le x_2\)
\(\Leftrightarrow\begin{cases}\Delta>0\\x_1\le0<2\le x_2\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x_1-2\right)\left(x_2-2\right)\le0\\\Delta>0\\\left(x_1-0\right)\left(x_2-0\right)\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}x_1x_2-2\left(x_1+x_2\right)+4\le0\\\Delta>0\\x_1x_2\le0\end{cases}\)
\(\Leftrightarrow m\ge\frac{2}{3}\)
Kết hợp trường hợp 1 và trường hợp 2 ta có \(m\ge\frac{2}{3}\) thì hàm đồng biến trên khoảng (0;2)
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3
ta tính \(y'=-3mx^2-6x+2-m\)
để hàm số nghịch biến trên R thì \(\)y'<0 với mọi x thuộc R ta có
y'<0 với mọi x thuộc R thì \(\begin{cases}-m<0\\\Delta=b^2-4ac=36+4.3.\left(2-m\right)m=-12m^2+24m+36<0\end{cases}\)
suy ra \(\begin{cases}m>0\\-12m^2+24m+36<0\end{cases}\)
giải hệ pt ta suy đc đk của m để hàm số nghịch biến
Lời giải:
Để hàm $y$ nghịch biến thì
\(y'=\frac{m^2-4}{(m+x)^2}<0\Leftrightarrow m^2-4<0\Leftrightarrow -2< m<2(1)\)
Mặt khác \(x\in(-\infty,1)\) nên để hàm số xác định, tức \(x+m\neq 0\Rightarrow m\neq (-1,+\infty)\), tức là \(m\leq -1(2) \)
Kết hợp \((1),(2)\Rightarrow -2 < m \leq -1\)