K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

Để đây là hàm số bậc nhất thì \(\dfrac{m^2}{3-4m}< >0\)

=>\(m\notin\left\{0;\dfrac{3}{4}\right\}\)

Để hàm số \(y=\dfrac{m^2}{3-4m}x+3m-2\) nghịch biến trên R thì

\(\dfrac{m^2}{3-4m}< 0\)

=>3-4m<0

=>-4m<-3

=>\(m>\dfrac{3}{4}\)

5 tháng 8 2016

5 - 4m + m2 < 0

=> m2  - 4m + 4 -4 + 5 <0

=> (m-2)2 + 1< 0 ( vô lý)

vậy không có giá trị nào của m để hàm số đã cho nghịch biến

12 tháng 11 2017

a)Để y là hàm số bậc nhất thì

\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)

Từ 2 điều trên suy ra m-2=0

                                  =>m=2

Vậy m=2

4 tháng 8 2016

a  đồng biến khi 5+m>0
b nghịch biến khi \(m< 1\)
c nghịch biến khi \(5-43+m^2< 0\)

19 tháng 10 2021

LỚP 4 KO BIẾT

23 tháng 10 2021

Đồng biến vì \(3m^2-m+3\)luôn dương

Lý do: \(3m^2-m+3\)có \(b^2-4ac=1-4.9=-35< 0\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

29 tháng 9 2020

\(y=\left(-m^2+4m-10\right)x+4\) 

\(a=-m^2+4m-10\) 

\(=-m^2+4m-4-6\) 

\(=-\left(m-2\right)^2-6\) 

Ta có 

\(\left(m-2\right)^2\ge0\forall m\) 

\(-\left(m-2\right)^2\le0\)   

\(-\left(m-2\right)^2-6\le-6\) 

Vậy a luôn âm 

Vậy hàm số luôn nghịch biến với mọi m                                      

13 tháng 11 2023

Để hàm số \(y=\dfrac{3-m}{m+3}x-3\) nghịch biến trên R thì \(\dfrac{3-m}{m+3}< 0\)

=>\(\dfrac{m-3}{m+3}>0\)

TH1: \(\left\{{}\begin{matrix}m-3>0\\m+3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m>-3\end{matrix}\right.\)

=>m>3

TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< 3\\m< -3\end{matrix}\right.\)

=>m<-3