Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số \(y=-x^2+2mx+1\) có \(a=-1< 0;-\frac{b}{2a}=m\)nên đồng biến trên \(\left(-\infty;m\right)\)
Do đó để hàm số đồng biến trên khoảng \(\left(-\infty;3\right)\)thì ta phải có \(\left(-\infty;3\right)\subset\left(-\infty;m\right)\Leftrightarrow m\ge3.\)
\(y=\left(m-1\right)x^2-2mx+m+2\)(1)
+) Nếu \(m-1=0\Leftrightarrow m=1\)thì :
(1) \(\Leftrightarrow y=-2x+3\)là hàm số bậc nhất có hệ số góc \(-2< 0\Rightarrow\)hàm số nghịch biến trên \(R\)
=> Hàm số nghịch biến trên \(\left(-\infty;2\right)\)
Vậy khi \(m=1\)hàm số nghịch biến trên \(\left(-\infty;2\right)\)(2)
+) Nếu \(m-1\ne0\Leftrightarrow m\ne1\)thì (1) là hàm số bậc hai
(1) nghịch biến trên \(\left(-\infty;2\right)\)thì đồ thị h/s có bề lõm hướng lên trên
\(\Rightarrow\hept{\begin{cases}a=m-1>0\\-\frac{b}{2a}\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\\frac{2m}{2\left(m-1\right)}\ge2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\)
\(\Rightarrow1< m\le2\)\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\end{cases}}\)(3)
Từ (2) và (3) suy ra hàm số nghịch biến trên \(\left(-\infty;2\right)\)thì \(1\le m\le2\)
Hàm số có \(a=1>0\) nên để hàm đồng biến trên khoảng đã cho
\(\Leftrightarrow-\frac{b}{2a}\le-3\Leftrightarrow2m+1\le-3\)
\(\Leftrightarrow m\le-2\)
a) Với \(x\in\left[0;1\right]\) => x - 2 < 0 => |x - 2| = - (x -2)
Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)
Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\) (*) với mọi \(x\in\left[0;1\right]\)
+) Xét m - 1 > 0 <=> m > 1
(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2
Kết hợp điều kiện m > 1 =>1 < m \(\le\) 2
+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn
+) Xét m - 1 < 0 <=> m < 1
(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1
Kết hợp các trường hợp : Với 0 \(\le\)m \(\le\) 2 thì .....
b) Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)
Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => xo < 2 => |xo - 2| = - (xo - 2)
xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\)
+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < xo < 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\)
Giải (a) <=> 1 < m < 2
Giải (b) <=> m < 1 hoặc m > 4/3
Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2
+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí
Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)
a/ Để hàm số đồng biến trên R thì \(m-1>0\Rightarrow m>1\)
b/ Để hàm số nghịch biển trên \(\left(1;+\infty\right)\) thì:
\(\frac{-\left(m-1\right)}{-2}< 1\Rightarrow m-1< 2\Rightarrow m< 3\)
Akai HarumaNguyễn Huy TúVõ Đông Anh TuấnNguyễn Huy ThắngNguyễn Thanh HằngHồng Phúc NguyễnMysterious PersonPhương AnTrần Việt Linh
\(a=-1< 0\) ; \(-\frac{b}{2a}=m\Rightarrow\) hàm số đồng biến trên \(\left(-\infty;m\right)\)
Để hàm số đồng biến trên \(\left(-\infty;3\right)\)
\(\Leftrightarrow m\ge3\)
TH1: \(m=0\Rightarrow y=30x+3\) đồng biến trên R (thỏa mãn)
TH2: \(m>0\Rightarrow\) hàm đồng biến trên \(\left(\dfrac{m-15}{m};+\infty\right)\)
Hàm đồng biến trên (2;9) khi \(\dfrac{m-15}{m}\le2\Rightarrow m\ge-15\Rightarrow m>0\)
TH3: \(m< 0\Rightarrow\) hàm đồng biến trên \(\left(-\infty;\dfrac{m-15}{m}\right)\)
Hàm đồng biến trên (2;9) khi \(\dfrac{m-15}{m}\ge9\)
\(\Rightarrow m-15\le9m\Rightarrow-\dfrac{15}{8}\le m< 0\)
Vậy \(m\ge-\dfrac{15}{8}\)
y=(m−1)x+3y=(m-1)x+3
Hàm số là hàm số bậc nhất khi
m−1≠0m-1≠0
⇔m≠1⇔m≠1
Vậy m≠1m≠1 thì hàm số đã cho là hàm số bậc nhất
b,
y=(m−1)x+3y=(m-1)x+3
Hàm số đồng biến trên RR khi
m−1>0m-1>0
⇔m>1⇔m>1
Vậy với m>1m>1 thì hàm số đã cho đồng biến trên RR
c,
y=(m−1)x+3y=(m-1)x+3
Hàm số nghịch biến trên RR khi
m−1<0m-1<0
⇔m<1⇔m<1
Vậy với m<1m<1 thì hàm số đã cho nghịch biến trên R