K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

B=2(x^2+2.x.1/4 +1/16)^2 -57/8

  =2.(x+1/4)^2 -57/8

MinB=-57/8 khi x=-1/4

25 tháng 8 2021

\(B=-14+2x^2+x=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{113}{8}=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\)\(ĐTXR\Leftrightarrow x=-\dfrac{1}{4}\)

23 tháng 7 2016

làm a)  GTLN = -2( x2 -4x +2) + 4 

GTLN =4

23 tháng 7 2016

b.\(\left(x^2+x+1\right)^2\ge0\) vs mọi x

=>\(\left(x^2+x+1\right)^2-\frac{13}{14}\ge-\frac{13}{14}\)

=> bt đạt GTNN =-13/14 

c. \(\left(x^2-x+1\right)^2\ge0\) vs mọi x

=> \(\left(x^2-x+1\right)^2+2016\ge2016\)

=> bt đạt GTNN =2016

23 tháng 7 2016

a) 8x-2x^2=-2(x^2-4x)=-2[(x^2-4x+4)-4]=-2(x-2)^2+8 luôn luôn lớn hơn hoặc bằng 8 với mọi x.                                                                                                                            Dấu bằng xảy ra khi và chỉ khi (x-2)^2=0                                                                                                                       <=> x-2=0                                                                                                                     <=>x=2

Vậy GTLN là 8 khi và chỉ khi x=2

                                        

4 tháng 12 2019

A = x+ 5y2 + 2x - 4xy - 10y + 14

A = x- x+ x+ y2 + 4y2 + 2x - 4xy - 10y + 14

A = ( y2 - 10y + 25 ) - ( x2 - 2x + 1 ) + ( x2 - 4xy + 4y2 ) + x2 + 10

A = ( y - 5 )2 - ( x - 1 )2 + ( x - 2y )2 + x2 + 10 \(\ge\)10

Dấu " = " xảy ra \(\Leftrightarrow\)y - 5 = 0 và x - 1 = 0

                            \(\Rightarrow\)y        = 5 và x       = 1

Min A = 10 \(\Leftrightarrow\)y = 5 và x = 1

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

16 tháng 9 2017

giúp mk vs nha , mk đăng cần rất gấp

16 tháng 9 2017

mình hk bít vít

22 tháng 10 2020

A = -x2 - 4x - y2 + 2y

= -( x2 + 4x + 4 ) - ( y2 - 2y + 1 ) + 5

= -( x + 2 )2 - ( y - 1 )2 + 5 ≤ 5 ∀ x, y

Dấu "=" xảy ra khi x = -2 ; y = 1

=> MaxA = 5 <=> x = -2 ; y = 1

B = \(\frac{2020}{x^2+2x+6}\)

Để B đạt GTLN => x2 + 2x + 6 đạt GTNN

Ta có : x2 + 2x + 6 = ( x2 + 2x + 1 ) + 5 = ( x + 1 )2 + 5 ≥ 5 ∀ x

Dấu "=" xảy ra khi x = -1

=> Min( x2 + 2x + 6 ) = 5

=> MaxB = 2020/5 = 404 khi x = -1

C = \(\frac{15}{6x-x^2-14}\)

Để C đạt GTNN => 6x - x2 - 14 đạt GTLN

Ta có : 6x - x2 - 14 = -( x2 - 6x + 9 ) - 5 = -( x - 3 )2 - 5 ≤ -5 ∀ x

Dấu "=" xảy ra khi x = 3

=> Max( 6x - x2 - 14 ) = -5

=> MinC = 15/(-5) = -3 khi x = 3

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

24 tháng 3 2023

ko có c hả bạn?