K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Tacó:

\(S=5x^2+2y^2+4xy-2x+4y+2019\)

\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2014\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2014\)

\(\ge2014\)

Dau "=' xảy ra khi x= 1 ; y=-2

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

27 tháng 7 2019

Bài 3 

Với abc=1

Ta CM \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}=1\)

\(VT=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ac}\)

       \(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\)(ĐPCM)

Ta có \(\left(1+a\right)^2+b^2+5=\left(a^2+b^2\right)+2a+6\ge2ab+2a+6\)

=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}=\frac{2ab+2a+6}{ab+a+4}=2-\frac{2}{ab+a+4}\)

Mà \(\frac{1}{ab+a+4}=\frac{1}{ab+a+1+3}\le\frac{1}{4}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)\)(do \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\))

=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}\ge2-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)=\frac{11}{6}-\frac{1}{2}.\frac{1}{ab+a+1}\)

Khi đó

\(P\ge\frac{11}{2}-\frac{1}{2}.\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\right)=\frac{11}{2}-\frac{1}{2}.1=5\)

\(MinP=5\)khi \(a=b=c=1\)

30 tháng 4 2016

x^2-4xy+4y^2+y^2+2y+1-4=0

=>(x-2y)^2+(y+1)^2-4=0

=>y=1;x=2

14 tháng 9 2019

\(a,x^2-4xy+5y^2=169\\ \Leftrightarrow\left(x-2y\right)^2+y^2=169\\ Vìx,y\in Znên:\\ \left[{}\begin{matrix}\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=169\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=169\\y^2=0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=25\\y^2=144\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=144\\y^2=25\end{matrix}\right.\end{matrix}\right.\\ Giảira\)

NV
7 tháng 11 2019

\(E=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2005\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2005\ge2005\)

\(E_{min}=2005\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

7 tháng 11 2019

Hay quá!?!?!?!?!