Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2
a\(A=x^2-3x+5\)
\(\Leftrightarrow A=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+5-\dfrac{9}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Min \(A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}\)
Theo mình nghĩ thì phải là giá trị lớn nhất
A=-(x^2-4x+5)
A=-[(x-2)^2+1]
Mà (x-2)^2+1>=1
Nên A<=-1
B=-(x^2+6x-1)
B=-[(x+3)^2-10]
nên B<=10
C=-(x^2+3x+2)
C=-(x^2+3x+9/4-1/4)
C=-[(x+3/2)^2-1/4]
Nên C<=1/4
D=-(2x^2-3x+1)
D=-2(x^2-3x/2+1/2)
D=-2(x^2-3x/2+9/16-1/16)
D=-2[(x-3/2)^2-1/16]
Nên D<=1/8
Chúc bạn học tốt!
A = x2 - 3x - 5 = ( x2 - 3x + 9/4 ) - 29/4 = ( x - 3/2 )2 - 29/4 ≥ -29/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MinA = -29/4 <=> x = 3/2
B = 5x - x2 - 2021 = -( x2 - 5x + 25/4 ) - 8059/4 = -( x - 5/2 )2 - 8059/4 ≤ -8059/4 ∀ x
Dấu "=" xảy ra khi x = 5/2
=> MaxB = -8059/4 <=> x = 5/2
C = 4x2 - 4x - 11 = ( 4x2 - 4x + 1 ) - 12 = ( 2x - 1 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = 1/2
=> MinC = -12 <=> x = 1/2
D = 3x - x2 - 15 = -( x2 - 3x + 9/4 ) - 51/4 = -( x - 3/2 )2 - 51/4 ≤ -51/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MaxD = -51/4 <=> x = 3/2
Tìm giá trị nhỏ nhất và lớn nhất, mình sẽ làm hai bài mẫu, các bài còn lại bạn làm tương tự
Giải:
GTNN:
\(A=x^2-4x+1\)
\(\Leftrightarrow A=x^2-4x+4-3\)
\(\Leftrightarrow A=\left(x^2-4x+4\right)-3\)
\(\Leftrightarrow A=\left(x-2\right)^2-3\ge-3;\forall x\)
\(\Leftrightarrow A_{Min}=-3\)
\("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy ...
GTLN:
\(D=5-8x-x^2\)
\(\Leftrightarrow D=21-16-8x-x^2\)
\(\Leftrightarrow D=21-\left(16+8x+x^2\right)\)
\(\Leftrightarrow D=21-\left(4+x\right)^2\le21;\forall x\)
\(\Leftrightarrow D_{Max}=21\)
\("="\Leftrightarrow4+x=0\Leftrightarrow x=-4\)
Vậy ...
đơn giản wá
a) \(A=x^2-3x-x+3+11\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\in R\)
Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
b) \(B=5-4x^2+4x\)
\(=-\left(4x^2-4x+1\right)+6\)
\(=-\left(2x-1\right)^2+6\le6\forall x\in R\)
Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
\(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)
Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)