Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = | x - 1 | + | x - 2018 |
A = | 1 - x | + | x - 2018 |
A = | 1 - x | + | x - 2018 | \(\ge\) | 1 - x + x - 2018 |
A = | 1 - x | + | x - 2018 | \(\ge\) 2017
Dấu = xảy ra \(\Leftrightarrow\)1 - x\(\ge\)0 , x - 2018 \(\ge\)0 ( không thõa mãn ) hoặc 1 - x \(\le\)0 , x - 2018 \(\le\)0
\(\Leftrightarrow\)1 \(\le\)0\(\le\)2018
\(\Rightarrow\)A \(\ge\)2017 . Dấu = xảy ra \(\Leftrightarrow\)1 \(\le\)x \(\le\)2018
Vậy : Min A = 2017 \(\Leftrightarrow\)1 \(\le\)x\(\le\)2018
Linh cảm của chúa Pain đề sai :)
đề phải là tìm giá trị lớn nhất .
a, \(a=\frac{1}{x^2+5}\)
\(x^2+5\ge5\)
mẫu : \(\ge\rightarrow\le\)
\(\Rightarrow A\le\frac{1}{5}"="\Leftrightarrow x=0\)
b,
\(b=\frac{\left(x+y-z\right)^2.2018}{a^4+b^4+2018}\)
\(a^4\ge0."="\Leftrightarrow a=0\)
\(b^4\ge0"="\Leftrightarrow b=0\)
\(a^4+b^4+2018\ge2018\)
mẫu \(\ge\rightarrow\le\)
\(\Rightarrow B\le\frac{\left(x+y-z\right)^2.2018}{2018}\Rightarrow B\le0\le\left(x+y-z\right)^2\) ( rút gọn 2018)
\(\Rightarrow B\le0\)
P/s : Chém bừa
Ta có |x+2018| >= x+2018
| x-2018|>=2018-x
=>|x+2018|+|x-2018|>= x+2018+2018-x = 4036
Dấu = xảy <=> x+2018 >=0=> x>=-2018
x-2018<=0 x<=2018
Vậy GTNN A=4036 <=> -2018=<x<=2018
Thưa bạn o có GTLN
T i ck mja
a, Vì \(\left(x-1\right)^2\ge0\Rightarrow A=\left(x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTNN của A=2018 khi x=1
b, Vì \(\hept{\begin{cases}\left(x+2\right)^{2018}\ge0\\\left(y-3\right)^{2020}\ge0\end{cases}\Rightarrow\left(x+2\right)^{2018}+\left(y-3\right)^{2020}\ge0}\)
\(\Rightarrow B=\left(x+2\right)^{2018}+\left(y-3\right)^{2020}+2019\ge2019\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy GTNN của B = 2019 khi x=-2,y=3
ta có
A = ( x - 1 )2 + 2018
=( x - 1 )2 + 2018≥2018
dấu "=" xảy ra khi ( x - 1 )2=0=>x=1
vs min A=2018 khi x=1
Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)
\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)
(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)
\(\Leftrightarrow2018\le x\le2020\))
Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)
Đặt \(B=\left|x-2019\right|\ge0\)
(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))
Vậy \(B_{min}=0\Leftrightarrow x=2019\)
\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))
Vậy \(BT_{min}=2\Leftrightarrow x=2019\)
\(Q=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(\ge\left|x-2018\right|+\left|x-2017+2019-x\right|\)
\(\ge\left|x-2018\right|+2\ge2\)
Dấu "=" <=> x = 2018
\(Q=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|\)
\(\ge x-2017+0+2019-x=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2017\le x\le2019\\x=2018\end{cases}}\Leftrightarrow x=2108\) (thỏa mãn cả hai trường hợp)
Vậy...
P/s: Ở đây mình gộp hai trường hợp \(x-2017\ge0;2019-x\ge0\) thành \(2017\le x\le2019\) cho lẹ nha!