K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

A = | x - 1 | + | x - 2018 |

A = | 1 - x | + | x - 2018 |

A = | 1 - x | + | x - 2018 | \(\ge\) | 1 - x + x - 2018 |

A = | 1 - x | + | x - 2018 | \(\ge\) 2017

Dấu = xảy ra \(\Leftrightarrow\)1 - x\(\ge\)0 , x - 2018 \(\ge\)0 ( không thõa mãn ) hoặc 1 - x \(\le\)0 , x - 2018 \(\le\)0

\(\Leftrightarrow\)\(\le\)0\(\le\)2018

\(\Rightarrow\)\(\ge\)2017 . Dấu = xảy ra \(\Leftrightarrow\)\(\le\)\(\le\)2018

Vậy : Min A = 2017 \(\Leftrightarrow\)\(\le\)x\(\le\)2018

12 tháng 12 2021

giúp mình nha

 

20 tháng 12 2018

\(|x-2019|+|x-2|\ge|x-2019+2-x|=2017\)

Dau "=" xay ra khi:

\(\left(x-2\right)\left(x-2019\right)\ge0\Leftrightarrow1\le x\le\frac{2019}{2}\)

tt

1 tháng 2 2018

Linh cảm của chúa Pain đề sai :)

đề phải là tìm giá trị lớn nhất .

a,  \(a=\frac{1}{x^2+5}\)

\(x^2+5\ge5\)

mẫu : \(\ge\rightarrow\le\)

\(\Rightarrow A\le\frac{1}{5}"="\Leftrightarrow x=0\)

b,

\(b=\frac{\left(x+y-z\right)^2.2018}{a^4+b^4+2018}\)

\(a^4\ge0."="\Leftrightarrow a=0\)

\(b^4\ge0"="\Leftrightarrow b=0\)

\(a^4+b^4+2018\ge2018\)

mẫu \(\ge\rightarrow\le\)

\(\Rightarrow B\le\frac{\left(x+y-z\right)^2.2018}{2018}\Rightarrow B\le0\le\left(x+y-z\right)^2\)  ( rút gọn 2018)

\(\Rightarrow B\le0\)

P/s : Chém bừa 

2 tháng 2 2018

k có B thỏa mãn

15 tháng 4 2019

Ta có |x+2018| >= x+2018  

         | x-2018|>=2018-x

=>|x+2018|+|x-2018|>= x+2018+2018-x = 4036 

Dấu = xảy <=> x+2018 >=0=>   x>=-2018

                         x-2018<=0        x<=2018

Vậy GTNN A=4036 <=> -2018=<x<=2018

Thưa bạn o có GTLN 

T i ck mja

15 tháng 4 2019

Bạn giải cụ thể ra được ko

2 tháng 7 2018

a, Vì \(\left(x-1\right)^2\ge0\Rightarrow A=\left(x-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1

Vậy GTNN của A=2018 khi x=1

b, Vì \(\hept{\begin{cases}\left(x+2\right)^{2018}\ge0\\\left(y-3\right)^{2020}\ge0\end{cases}\Rightarrow\left(x+2\right)^{2018}+\left(y-3\right)^{2020}\ge0}\)

\(\Rightarrow B=\left(x+2\right)^{2018}+\left(y-3\right)^{2020}+2019\ge2019\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy GTNN của B = 2019 khi x=-2,y=3

2 tháng 7 2018

ta có 

A = ( x - 1 )2 + 2018

=( x - 1 )2 + 2018≥2018

dấu "=" xảy ra khi ( x - 1 )2=0=>x=1

vs min A=2018 khi x=1

28 tháng 2 2019

\(\left(x-1\right)^{10}+\left(y-3\right)^{20}+2018\)

Nhận xét: \(\left(x-1\right)^{10}\ge0;\left(y-3\right)^{20}\ge0\)

\(\Rightarrow\left(x-1\right)^{10}+\left(y-3\right)^{20}+2018\ge2018\)

Dấu bằng xảy ra khi x=1 y=3

9 tháng 11 2019

Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)

\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)

(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)

\(\Leftrightarrow2018\le x\le2020\))

Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)

Đặt \(B=\left|x-2019\right|\ge0\)

(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))

Vậy \(B_{min}=0\Leftrightarrow x=2019\)

\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))

Vậy \(BT_{min}=2\Leftrightarrow x=2019\)

11 tháng 3 2019

\(Q=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)

       \(\ge\left|x-2018\right|+\left|x-2017+2019-x\right|\)

        \(\ge\left|x-2018\right|+2\ge2\)

Dấu "=" <=> x = 2018

12 tháng 3 2019

\(Q=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|\)

\(\ge x-2017+0+2019-x=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2017\le x\le2019\\x=2018\end{cases}}\Leftrightarrow x=2108\) (thỏa mãn cả hai trường hợp)

Vậy...

P/s: Ở đây mình gộp hai trường hợp \(x-2017\ge0;2019-x\ge0\) thành \(2017\le x\le2019\) cho lẹ nha!