Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phá đầu giá trị tuyệt đối ra, có công thức /a/ +/b/ > hoặc bằng a+b đấy chứng minh rồi áp dụng vào
\(A\le\left|x-2018-x+2017\right|=1\\ A_{max}=1\Leftrightarrow\left(x-2018-x+2017\right)\left(x-2017\right)\ge0\\ \Leftrightarrow2017-x\ge0\Leftrightarrow x\le2017\)
vì giá trị tuyệt đối lớn hơn hoặc bằng 0 nên GTNN của |x+1|+|x+2| là 1 khi x=-2 hoặc -1
|x + 2| = |-x - 2| => |x + 1| + |x + 2| = |x + 1| + |-x - 2|\(\ge\)|x + 1 - x - 2| = 1
Đẳng thức xảy ra khi: (x + 1)(x + 2) = 0 => x + 1 = 0 hoặc x + 2 = 0 => x = -1 hoặc x = -2
Vậy giá trị nhỏ nhất của |x + 1| + |x + 2| là 1 khi x = -1 hoặc x = -2
\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+x+x+x\right)+1+2+3+4=20\\\left(x+x+x+x\right)+1+2+3+4=-20\text{}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=20\\x+10=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=20-10\\x=-20-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-30\end{cases}}\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=20\)
\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left[x+x+x+x\right]+\left[1+2+3+4\right]=20\\\left[x+x+x+x\right]+\left[1+2+3+4\right]=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x+10=20\\4x+10=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-30\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=5\\2x=-15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{15}{2}\end{cases}}\)
Vũ Bách Quang sai từ dòng thứ ba đến cuối . Xem kĩ lại nhé
\(P=\left|x-1\right|+\left|x-2017\right|+\left|x-2018\right|\\ \Leftrightarrow P=\left|x-1\right|+\left|2018-x\right|+\left|x-2017\right|\\ \Leftrightarrow P=2017+\left|x-2017\right|\\ \Leftrightarrow P\ge2017\)
+Dấu ''='' xảy ra khi
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\le2018\\x=2017\end{matrix}\right.\)
\(\Leftrightarrow x=2017\)
+Vậy \(P_{min}=2017\) khi \(x=2017\)