Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề (I): Cho 2 số thực a, b thì |a| + |b| \(\ge\)|a+b|. Đẳng thức xảy ra khi ab \(\ge\)0. Bạn có thể tham khảo cách chứng minh tại đây nhé: https://olm.vn/hoi-dap/detail/211409388447.html
Quay trở lại giải bài toán ban đầu.
Áp dụng bổ đề (I) và các tính chất của giá trị tuyệt đối ta có:
\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)\(\ge\left|x-2013+2016-x\right|+0+0=\left|3\right|+0=3.\)
Theo đề bài, đẳng thức phải xảy ra, khi: \(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\x=2014\\y=2015\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}.}}\)
Thử lại thấy thoả mãn.
Vậy x = 2014, y = 2015.
|x+1|+|x+2|+......+|x+2014|=2015x
Vì |x+1| \(\ge\) 0;|x+2| \(\ge\) 0;.....;|x+2014| \(\ge\) 0 (với mọi x)
=>|x+1|+|x+2|+......+|x+2014| \(\ge\) 0 (với mọi x)
Mà |x+1|+|x+2|+.....+|x+2014|=2015x
=>2015x \(\ge\) 0=>x \(\ge\) 0=>x+1>0;x+2>0;....;x+2014>0
Do đó |x+1|=x+1;|x+2|=x+2;.....;|x+2014|=x+2014
Ta có:(x+1)+(x+2)+.....+(x+2014)=2015x
=>(x+x+....+x)+(1+2+....+2014)=2015x
=>2014x + \(\frac{2014.\left(2014+1\right)}{2}\) =2015x
=>x=2029105
Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.
\(A=\left|x+2014\right|+\left|x-1\right|=\left|x+2014\right|+\left|1-x\right|\)
\(\ge\left|x+2014-x+1\right|=2015\)
Dấu "=" xảy ra <=> \(\left(x+2014\right)\left(1-x\right)\ge0\)
TH1: x + 2014 \(\ge\)0 và 1- x \(\ge\)0
<=> x \(\ge\)-2014 và x \(\le\)1
<=> \(-2014\le x\le1\)
TH2: x + 2014 \(\le\)0 và 1 - x \(\le\)0
<=> x \(\le\)-2014 và x\(\ge\)1
==> loại
Vậy GTNN của A = 2015 tại \(-2014\le x\le1\)