K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

\(M=2x^2+2y^2-2xy-2x+2y+2\)

\(=\left[\left(x^2-2xy+y^2\right)-\frac{4}{3}\left(x-y\right)+\frac{4}{9}\right]+\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{4}{3}\)

\(=\left(x-y-\frac{2}{3}\right)^2+\left(x-\frac{1}{3}\right)^2+\left(y+\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)

\(\Rightarrow M\ge\frac{2}{3}\)

21 tháng 4 2018

\(M=x^2+y^2-xy-x+y+1\)

\(4M=4x^2+4y^2-4xy-4x+4y+1\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-4x+4y+1\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+3\left(y^2+2y+1\right)-3\)

\(4M=\left(2x-y-1\right)^2+3\left(y+1\right)^2-3\)

Mà : \(\left(2x-y-1\right)^2\ge0\forall x;y\)

\(\left(y+1\right)^2\ge0\forall y\Rightarrow3\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow4M\ge-3\)

\(\Leftrightarrow M\ge-\frac{3}{4}\)

Dấu " = " xảy ra khi :

\(\hept{\begin{cases}2x-y-1=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-y=1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy  \(M_{Min}=-\frac{3}{4}\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

4 tháng 12 2016

\(4M=\left(2x-y-1\right)^2+\left(3y^2+2y+3\right)\)

\(4M=\left(2x-y-1\right)^2+\left[\left(\sqrt{3}y\right)^2+2.\sqrt{3}y.\frac{1}{\sqrt{3}}+\frac{1}{3}\right]+\frac{8}{3}\)

\(4M=\left(2x-y-1\right)^2+\left(\sqrt{3}y+\frac{\sqrt{3}}{3}\right)^2+\frac{8}{3}\)

\(GTNN\left(M\right)=\frac{2}{3}\)

\(khi...y=-\frac{1}{3};x=\frac{1}{3}\)

25 tháng 7 2017

Ta có \(A=\left(x^2+2\right)\left(y^2+2\right)=\left(xy\right)^2+2x^2+2y^2+4\)

\(=\left(xy\right)^2+2\left(x+y\right)^2-4xy+4\)\(=\left(2m+1\right)^2+2\left(m-2\right)^2-4\left(2m+1\right)+4\)

\(=4m^2+4m+1+2m^2-8m+8-8m-4+4\)

\(=6m^2-12m+9=6\left(m^2-2m+1\right)+3\)

Ta thấy \(6\left(m-1\right)^2\ge0\Rightarrow6\left(m-1\right)^2+3\ge3\Rightarrow A\ge3\)

Vậy Min A=3 khi m-1=0 hay m=1

8 tháng 11 2016

1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)

Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)

                                        =>     \(x=1\)            =>\(x=y\)

Mình chỉ có thể giúp bạn câu 1 thôi

                                                                                                                                                                                                   

17 tháng 1 2018

M nhỏ nhất khi mẫu bé nhất.mà

x2y,2y4,x2>=0

x=y=0

m=1/2,tại x=y=0