Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\left(3x\right)^3-2.2.3x+2^2\right]+6\)
\(A=\left(3x-2\right)^2+6\)
Ta có
\(\left(3x-2\right)^2\ge0\)
\(\left(3x-2\right)^2+6\ge6\)
Dấu " = " xảy ra khi \(3x-2=0\Rightarrow x=\frac{2}{3}\)
Vậy MINA=6 khi x=\(\frac{2}{3}\)
\(A=9x^2-12x+10=\left(9x^2-12x+4\right)+6=\left(3x+2\right)^2+6\)
Vì: \(\left(3x+2\right)^2\ge0\) với mọi x
=>\(\left(3x+2\right)^2+6\ge6\)
Vậy GTNN của A là 6 khi \(x=-\frac{2}{3}\)
A = 9x2 - 12x + 10
= (3x)2 - 2 . 3x . 2 + 4 + 6
= (3x - 2)2 + 6
(3x - 2)2 lớn hơn hoặc bằng 0
(3x - 2)2 + 6 lớn hơn hoặc bằng 6
Vậy Min A = 6 khi x = 2/3
a)\(A=9x^2-12x+10\)
\(A=\left(3x\right)^2-2.2.3x+2^2+6\)
\(A=\left(3x-2\right)^2+6\)
Vì \(\left(3x-2\right)^2\) lớn hơn bằng 0
Suy ra:\(\left(3x-2\right)^2+6\) lớn hơn bằng 6
Dấu = xảy ra khi 3x-2=0
3x=2
x=\(\frac{2}{3}\)
Vậy Min A=6 khi x=\(\frac{2}{3}\)
\(A=9x^2-12x+10\)
\(=\left(3x\right)^2-2.2.3x+4+6\)
\(=\left[\left(3x\right)^2-2.2.3x-2^2\right]+6\)
\(=\left(3x-2\right)^2+10\)
Ta có :
\(\left(3x-2\right)^2\ge0\)
\(\Rightarrow\left(3x-2\right)^2+6\ge6\)
\(\Rightarrow A\ge6\)
\(\Rightarrow A_{min}=6\Leftrightarrow3x-2=0\rightarrow x=\frac{2}{3}\)
\(A=-9x^2-12x+4\)
\(=-\left[\left(3x\right)^2+2\times3x\times2+2^2-2^2-4\right]\)
\(=-\left[\left(3x+2\right)^2-8\right]\)
\(\left(3x+2\right)^2\ge0\)
\(\left(3x+2\right)^2-8\ge-8\)
\(-\left[\left(3x+2\right)^2-8\right]\le8\)
Vậy Max A = 8 khi x = \(-\frac{2}{3}\)
\(A=-9x^2-12x+4=-\left(9x^2+12x-4\right)=-\left[\left(3x\right)^2+2.2.3x+2^2-8\right]\)
\(=-\left[\left(3x+2\right)^2-8\right]=-\left(3x+2\right)^2+8\)
Do \(\left(3x+2\right)^2\ge0\Rightarrow-\left(3x+2\right)^2\le0\Rightarrow-\left(3x+2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(3x+2=0\Rightarrow x=\frac{-2}{3}\)
Vậy giá trị lớn nhất của \(-9x^2-12x+4\)là 8 khi \(x=\frac{-2}{3}\)
\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)
\(A=\left(2x\right)^2-2\times2x\times3+9+1\)
\(A=\left(2x-3\right)^2+1\)
Nhận xét:
\(\left(2x-3\right)^2\ge0\)
\(=>\left(2x-3\right)^2+1\ge1\)
\(=>A\ge1\)
Vậy A đạt GTNN tại A=1 <=> x=3/2
A = 4x2 -12x + 10
= (2x)2 - 2.2x.3 + 32 + 1
= (2x -3)2 +1 >= 1 với mọi x
Min A = 1 khi (2x -3)2 =0
<=> 2x - 3 = 0
<=> 2x = 3
<=> x = 3/2
Vậy Min A=1 khi x = 3/2
Lời giải:
\(A=4x^2+12x+2018=(2x)^2+2.2x.3+3^2+2009\)
\(=(2x+3)^2+2009\)
Vì $(2x+3)^2\geq 0, \forall x\Rightarrow A=(2x+3)^2+2009\geq 2009$
Vậy GTNN của $A$ là $2009$. Giá trị này được xác định tại $(2x+3)^2=0\Leftrightarrow x=\frac{-3}{2}$
------------------
\(B=5x^2+y^2-4xy-6x+13=(4x^2+y^2-4xy)+(x^2-6x+9)+4\)
\(=(2x-y)^2+(x-3)^2+4\)
Vì $(2x-y)^2\geq 0; (x-3)^2\geq 0, \forall x,y$
$\Rightarrow B=(2x-y)^2+(x-3)^2+4\geq 4$
Vậy GTNN của $B$ là $4$. Giá trị này xác định tại $(2x-y)^2=(x-3)^2=0\Leftrightarrow x=3; y=6$
-------------
\(C=9x^2+y^2-2xy-8x+10\)
\(=(x^2+y^2-2xy)+(8x^2-8x)+10\)
\(=(x-y)^2+8(x^2-x+\frac{1}{4})+8=(x-y)^2+8(x-\frac{1}{2})^2+8\)
\(\geq 0+8.0+8=8\)
Vậy GTNN của $C$ là $8$. Giá trị này xác định tại \((x-y)^2=(x-\frac{1}{2})^2=0\Leftrightarrow x=y=\frac{1}{2}\)
P= 9x^2 + 12x -5
= (3x)^2 + 2.3.2x + 4 -4 -5
=(9x^2 + 2.3.2x + 4) -9
= (3x+2)^2 -9
min p = -9 => (3x+2)^2 = 0
=> x= -2/3
max p = -9 => x= -2/3
\(A=\left[\left(3x\right)^3-2.2.3x+2^2\right]+6\)
\(=\left(3x-2\right)^2+6\)
Ta có :
\(\left(3x-2\right)^2\ge0\)
\(\Rightarrow\left(3x-2\right)^2+6\ge6\)
Dấu " = " xảy ra khi và chỉ khi \(3x-2=0\)
\(3x=2\)
\(x=\frac{2}{3}\)
Vậy \(Min_A=6\Leftrightarrow x=\frac{2}{3}\)