K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

P= 9x^2 + 12x -5

  = (3x)^2 + 2.3.2x + 4 -4 -5

  =(9x^2 + 2.3.2x + 4) -9

  = (3x+2)^2 -9 

min p = -9 => (3x+2)^2 = 0

                => x= -2/3

max p = -9 => x= -2/3

10 tháng 8 2017

\(P=9x^2+12x-5\)

\(=9x^2+12x+4-9\)

\(=\left(3x+2\right)^2-9\ge-9\)

Dấu " = " khi \(\left(3x+2\right)^2=0\Leftrightarrow x=\dfrac{-2}{3}\)

Vậy \(MIN_P=-9\) khi \(x=\dfrac{-2}{3}\)

b, sai đề

16 tháng 10 2017

\(a,x^2+2x+7\)

\(=x^2+2x+1+6\)

\(=\left(x+1\right)^2+6\)

\(V\text{ì}\left(x+1\right)^2\ge0\)

\(\left(x+1\right)^2+6\ge0+6\)

\(\left(x+1\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy MinA=6 khi x=-1

b) \(x^2+x+1\)

\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)

\(x=\dfrac{1}{2}\)

16 tháng 10 2017

Bn tự lm theo phom đó rồi kết luận nhé. Mỏi tay ghê

1 tháng 9 2020

\(A=x^2+9x+56=\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\)

Vì \(\left(x+\frac{9}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\ge\frac{143}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{9}{2}\right)^2=0\Leftrightarrow x=-\frac{9}{2}\)

Vậy minA = 143/4 <=> x = - 9/2

\(B=x^2-2x+15=\left(x-1\right)^2+14\)

Vì \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2+14\ge14\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy minB = 14 <=> x = 1

\(C=9x^2-12x=9\left(x-\frac{2}{3}\right)^2-4\)

Vì \(\left(x-\frac{2}{3}\right)^2\ge0\forall x\)\(\Rightarrow9\left(x-\frac{2}{3}\right)^2-4\ge-4\)

Dấu "=" xảy ra \(\Leftrightarrow9\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\)

Vậy minC = - 4 <=> x = 2/3

1 tháng 9 2020

Bài 1.

A = x2 + 9x + 56

= ( x2 + 9x + 81/4 ) + 143/4

= ( x + 9/2 )2 + 143/4

( x + 9/2 )2 ≥ 0 ∀ x => ( x + 9/2 )2 + 143/4 ≥ 143/4

Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2

=> MinA = 143/4 <=> x = -9/2

B = x2 - 2x + 15

= ( x2 - 2x + 1 ) + 14

= ( x - 1 )2 + 14

( x - 1 )2 ≥ 0 ∀ x => ( x - 1 )2 + 14 ≥ 14 

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinB = 14 <=> x = 1 

C = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4

9( x - 2/3 )2 ≥ 0 ∀ x => 9( x - 2/3 )2 - 4 ≥ -4

Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3

=> MinC = -4 <=> x = 2/3

Bài 2.

D = -9x2 + x

= -9( x2 - 1/9x + 1/324 ) + 1/36

= -9( x - 1/18 )2 + 1/36

-9( x - 1/18 )2 ≤ 0 ∀ x => -9( x - 1/18 )2 + 1/36 ≤ 1/36

Đẳng thức xảy ra <=> x - 1/18 = 0 => x = 1/18

=> MaxD = 1/36 <=> x = 1/18

E = -x2 + 3x - 5

= -( x2 - 3x + 9/4 ) - 11/4

= -( x - 3/2 )2 - 11/4

-( x - 3/2 )2 ≤ 0 ∀ x => -( x - 3/2 )2 - 11/4 ≤ -11/4

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MaxE = -11/4 <=> x = 3/2

F = -16x2 - 5x

= -16( x2 + 5/16x + 25/1024 ) + 25/64

= -16( x + 5/32 )2 + 25/64 

-16( x + 5/32 )2 ≤ 0 ∀ x => -16( x + 5/32 )2 + 25/64 ≤ 25/64

Đẳng thức xảy ra <=> x + 5/32 = 0 => x = -5/32

=> MaxF = 25/64 <=> x = -5/32

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

4 tháng 10 2015

a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11

Vì (2x-2)2luôn lớn hơn hoặc bằng 0

=>A>hoặc =0+11 hay a>hoặc =11

vậy GTNN của A là 11 khi x=1

7 tháng 8 2016

\(A=-9x^2-12x+4\)

\(=-\left[\left(3x\right)^2+2\times3x\times2+2^2-2^2-4\right]\)

\(=-\left[\left(3x+2\right)^2-8\right]\)

\(\left(3x+2\right)^2\ge0\)

\(\left(3x+2\right)^2-8\ge-8\)

\(-\left[\left(3x+2\right)^2-8\right]\le8\)

Vậy Max A = 8 khi x = \(-\frac{2}{3}\)

7 tháng 8 2016

\(A=-9x^2-12x+4=-\left(9x^2+12x-4\right)=-\left[\left(3x\right)^2+2.2.3x+2^2-8\right]\)

\(=-\left[\left(3x+2\right)^2-8\right]=-\left(3x+2\right)^2+8\)

Do \(\left(3x+2\right)^2\ge0\Rightarrow-\left(3x+2\right)^2\le0\Rightarrow-\left(3x+2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(3x+2=0\Rightarrow x=\frac{-2}{3}\)

Vậy giá trị lớn nhất của \(-9x^2-12x+4\)là 8 khi \(x=\frac{-2}{3}\)

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!