Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*\(A=x^2+2y^2-2xy-4x-6y-3\)
\(A=x^2-2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2-10y+25\right)-32\)
\(A=x^2-2x\left(y+2\right)+\left(y+2\right)^2+\left(y-5\right)^2-32\)
\(A=\left(x-y-2\right)^2+\left(y-5\right)^2-32\ge-32\)
\(\Rightarrow Min_A=-32\Leftrightarrow x=7;y=5\)
* \(B=4x^2+2y^2-4xy+4x+6y+1\)
\(B=\left(2x\right)^2-\left(4xy+4x\right)+\left(y^2-2y+1\right)+\left(y^2+8y+16\right)-16\)\(B=\left(2x\right)^2-2.2x\left(y-1\right)+\left(y-1\right)^2+\left(y+4\right)^2-16\)\(B=\left(2x-y+1\right)^2+\left(y+4\right)^2-16\ge-16\)
\(\Rightarrow Min_B=-16\Leftrightarrow x=-\dfrac{5}{2};y=-4\)
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 1
a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA=-9/8 khi x=-1/4
b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)
Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)
Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0
Vậy minB=1 khi x=y=0
lý luận tương tự bài 1, bài này mình làm tắt
Bài 2:
a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)
\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)
Dấu "=" xảy ra khi x=5/6
b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)
\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)
Dấu "=" xảy ra khi x=y=0
\(C=2\left(x-\frac{5}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\Rightarrow C_{min}=\frac{7}{8}\)
\(D=\left(x^2+4xy+4y^2\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{8083}{4}\)
\(D=\left(x+2y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{8083}{4}\ge\frac{8083}{4}\)
\(E=\frac{1}{2}\left(4x^2+y^2+\frac{9}{4}-4xy-6x+3y\right)+\frac{1}{2}\left(y^2+y+\frac{1}{4}\right)+\frac{15}{4}\)
\(E=\frac{1}{2}\left(2x-y-\frac{3}{2}\right)^2+\frac{1}{2}\left(y+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(A=-\left(x-2\right)^2+11\le11\)
\(B=-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
\(C=-\left(x-3y\right)^2-\left(y-2\right)^2+11\le11\)
\(D=\left(x^2+y^2+1^2+2\left(x-y-xy\right)\right)+\left(y^2-4y+4\right)+\left(2020-1-16\right)\)\(D=\left(x-y+1\right)^2+\left(y-2\right)^2+2015\ge2015\)
\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)
Vậy GTNN của A là -22 khi x = 5
\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = -3
\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)
\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)
Vậy GTNN của D là 16 khi x = 2; y = 0
\(E=x^2+2y^2-2xy+4x-6y+100\)
\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)
\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)
Vậy GTNN của E là 95 khi x = -1 ; y = 1
\(F=2x^2+y^2-2xy+4x+100\)
\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)
\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)
Vậy GTNN của F là 96 khi x = -2; y = -2
\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)
Vậy GTLN của A là 39 khi x = -6
\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)
Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
a, xem lại đề
\(b,x^2-4x+y^2-6y+1\\ =\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-12\\ =\left(x-2\right)^2+\left(y-3\right)^2-12\ge-12\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy ...
\(c,x^2-4xy+5y^2-2y+5\\ =\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y-1\right)^2+4\ge4\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy ...
a,
b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12
Dấu "=" xảy ra⇔{x=2y=3⇔{x=2y=3
Vậy ...
c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4
Dấu "=" xảy ra⇔{x=2y=1⇔{x=2y=1
Vậy ...