K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

ĐKXĐ: x > 1

\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\)

 \(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+6\sqrt{x-1}+9}\)

 \(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}\)

 \(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+3\right|\)

 \(=\left|1-\sqrt{x-1}\right|+\sqrt{x-1}+3\ge1-\sqrt{x-1}+\sqrt{x-1}+3=4\)

\(\text{Dấu "=" xảy ra }\Leftrightarrow1-\sqrt{x-1}\ge0\)

                            \(\Leftrightarrow\sqrt{x-1}\le1\)

                            \(\Leftrightarrow x-1\le1\)

                           \(\Leftrightarrow x\le2\)

\(\text{Kết hợp ĐKXĐ ta được }1\le x\le2\)

\(\text{Vậy}\)\(A_{min}=4\Leftrightarrow1\le x\le2\)

10 tháng 1 2018

Điều kiên (x<>1,X>0) xong rút gọn đi :)))

10 tháng 1 2018

TRẢ LỜI HẾT MAU :(

8 tháng 8 2016

a ) Đặt \(A=\sqrt{x-2}+\sqrt{4-x}\). Nhận xét A > 0

\(\Rightarrow A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Vì \(\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\Rightarrow A^2\ge2\)

\(\Rightarrow A\ge\sqrt{2}\)(Vì A > 0)
Dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}2\le x\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy ....

b) Tương tự .

c) Đề phải là tìm GTLN 

\(C=\left|x\right|\sqrt{1-x^2}=\sqrt{x^2\left(1-x^2\right)}\) . Áp dụng bđt Cauchy : \(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)

Dấu đẳng thức xảy ra khi và chỉ khi \(x^2=1-x^2\Leftrightarrow x=\frac{\sqrt{2}}{2}\)hoặc \(x=-\frac{\sqrt{2}}{2}\)

Vậy ....

GTNN dễ thấy bằng 0 tại x = 0 hoặc x = -1 hoặc x = 1 

8 tháng 8 2016

a)Ta cần chứng minh BĐT \(\sqrt{T}+\sqrt{H}\ge\sqrt{T+H}\)

2 vế luôn dương bình phương ta có:

\(\left(\sqrt{T}+\sqrt{H}\right)^2\ge\left(\sqrt{T+H}\right)^2\)

\(T+H+2TH\ge T+H\)

\(2TH\ge0\) (luôn đúng do \(TH\ge0\))

Dấu = xảy ra khi \(TH\ge0\)

Áp dụng ta có \(\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

Dấu = xảy ra khi (x-2)(4-x)\(\ge\)0 suy ra \(\orbr{\begin{cases}2\le0\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy ....

b) Áp dụng tương tự ta có:

\(\sqrt{7-x}+\sqrt{x-5}\ge\sqrt{7-x+x-5}=\sqrt{2}\)

Dấu = khi (7-x)(x-5)\(\ge\)0 suy ra \(\orbr{\begin{cases}x\le5\le7\\\left(7-x\right)\left(x-5\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=7\\x=5\end{cases}}\)

Vậy...

c)Ta thấy \(\left|x\right|\sqrt{1-x^2}\ge0\)

Dấu = khi x=0 hoặc x=±1

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

8 tháng 2 2020

\(A=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2-\left(\sqrt{y+1}\right)^2+3y+1\)

\(A=\left(\sqrt{x}-\sqrt{y}-1\right)^2-\left(y+2\sqrt{y}+1\right)+3y+1\)

\(A=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2y-2\sqrt{y}\)

\(A=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(y-2.\sqrt{y}.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{2}\)

\(A=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\forall x,y\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-\sqrt{y}-1=0\\\sqrt{y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{1}{4}\end{cases}}}\)

Vậy......

17 tháng 9 2020

Đặt \(A=\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)

\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}\)

\(A=\left|x+1\right|+\left|x-2\right|\)

\(A=\left|x+1\right|+\left|2-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)

Đẳng thức xảy ra khi ab ≥ 0

=> ( x + 1 )( 2 - x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\-x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}}\Leftrightarrow-1\le x\le2\)

2. \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\-x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}\)( loại )

=> MinA = 3 <=> \(-1\le x\le2\)