Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=13x^2+y^2+4xy-2y-16x+2015\)
\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)
\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)
\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)
Đến đây bạn tự làm nốt nhé~
không làm được thì ib
A= 13x2 + y2+ 4xy -2y -16x + 2015
= (4x+y+1+4xy-2y-4x)2+((3x)2-12x+4) + 2010
=( 2x+y+1)2+(3x+2)2+2010
Ta có (2x+y+1)2 \(\ge\) 0 với mọi x
(3x+2)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( 2x+y-1)2+(3x-2)2+2010 \(\ge\) 2010 với mọi x
A đạt GTNN là 2010 khi x= \(\dfrac{2}{3}\) , y=\(\dfrac{-1}{3}\)
\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)
\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)
\(( y^2 + 4y + 4 ) + 2010\)
\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)
\(\ge\)\(2010\)
\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)
\(\Rightarrow\)\(x = 1 và y = - 2\)
\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)
câu 2: gọi biểu thức là A đi
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=1.\left[\left(a+b\right)^2-3ab\right]+ab=\left(a+b\right)^2-2ab=1-2ab\)
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)(chỗ 4ab là cộng 2 vế với 2ab đó)
\(\Leftrightarrow-ab\ge\frac{-1}{4}\Leftrightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\Rightarrow A\ge\frac{1}{2}\Rightarrowđpcm\)
\(A=-x^2-5y^2+2xy-4x+20y+13\)
\(=-x^2+2xy-y^2-4y^2-4x+4y+16y+13\)
\(=-\left(x^2-2xy+y^2\right)-\left(4y^2-16y+16\right)-\left(4x-4y\right)+29\)
\(=-\left(x-y\right)^2-4\left(y-2\right)^2-4\left(x-y\right)-4+25\)
\(=-\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]-4\left(y-2\right)^2+25\)
\(=-\left(x-y+2\right)^2-4\left(y-2\right)^2+25\)
\(A_{max}=25\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y+2=0\\y=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
\(B=-7x^2-y^2+4xy+16x-2y+17.\)
\(=-4x^2+4xy-y^2-3x^2+12x-12+4x-2y+29\)
\(=-\left(2x-y\right)^2-3\left(x-2\right)^2+2\left(2x-y\right)^2-1+30\)
\(=-\left[\left(2x-y\right)^2-2\left(2x-y\right)^2+1\right]-3\left(x-2\right)^2+30\)
\(=-\left(2x-y-1\right)^2-3\left(x-2\right)^2+30\)
\(\Rightarrow B_{max}=30\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-y-1=0\\x=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)