Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-1\right)^4\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\left(x-3\right)^4\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
\(6\left(x-1\right)^2\left(x-3\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1;x=3\)
Vậy GTNN của \(A=0\Leftrightarrow x=1;x=3\)
\(\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) ko xảy ra đồng thời đc
Ta có : P = x4 + x2 - 6x + 9 = x4 + (x2 - 6x + 9) = x4 + (x - 3)2
Mà : x4 \(\ge0\forall x\in R\)
(x - 3)2 \(\ge0\forall x\in R\)
Nên : P = x4 + (x - 3)2 \(\le x-x-3=-3\)
Vậy GTNN của P = 3 khi x = 0
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
a, Min=-3 khi x=0
b, Min=9/16 khi x=-1/2
c,Min=0 khi x=1
cái phần a với phần c nhìn cái là ra vì mũ chắn luôn dương