Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật
2.ĐK: \(x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)
Vậy GTNN của Q là 1 khi x = 1
1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)
Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy GTLN của B là 7 khi x = 2
Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )
a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)
Vậy \(Q=\frac{x^2}{x-2}\)
b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)
\(\Rightarrow Q\ge1+4=5\)
Vậy : GTNN của \(Q=5\)
P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33
Nếu chưa học Cô si thì chứng minh rồi dùng thôi :
Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :
\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)
Thật vậy : \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(A=\left(2x\right)^2+2.2x.\frac{1}{4}+\frac{1}{16}+\frac{1}{16}=\left(2x+\frac{1}{4}\right)^2+\frac{1}{16}\ge\frac{1}{16}\)
=> GTNN(A)=\(\frac{1}{16}\)
\(B=9x^2+2.3x.1+1+14=\left(3x+1\right)^2+14\ge14\)
=> GTNN(B)=14
Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)
Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10
Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5
Dấu bằng xảy ra khi và chỉ khi x=y=2
Cách khác
\(A=\frac{4x-1}{x^2+3}=\frac{3\left(4x-1\right)}{3\left(x^2+3\right)}=\frac{\left(4x^2+12x+9\right)-4x^2-12}{3\left(x^2+3\right)}=\frac{\left(2x+3\right)^2}{3\left(x^2+3\right)}+\frac{-4\left(x^2+3\right)}{3\left(x^2+3\right)}\)
\(A=\frac{\left(2x+3\right)^2}{3\left(x^2+3\right)}+\frac{-4}{3}\ge-\frac{4}{3}\)
Vậy Min = -4/3 <=> x = -3/2
Đặt \(A=\frac{4x-1}{x^2+3}=t\)\(\Rightarrow x^2.t+3t=4x-1\)
<=> \(x^2.t-4x+3t+1=0\)
Đa thức trên có nghiệm <=> \(\Delta\ge0\)
<=> \(16-4t\left(1+3t\right)\ge0\)
<=> \(16-4t-12t^2\ge0\)
<=> \(3t^2+t-3\le0\)
<=> \(\left(t-1\right)\left(3t+4\right)\le0\)
<=> \(\hept{\begin{cases}t\le1\\t\ge-\frac{4}{3}\end{cases}}\)
Vậy min A = \(-\frac{4}{3}\) <=> \(x=-\frac{3}{2}\)