Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
\(A=\frac{1}{x^2+4x+5}=\frac{1}{\left(x+2\right)^2+1}\)
Vì: \(\left(x+2\right)^2\ge0\)
=> \(\left(x+2\right)^2+1\ge1\)
=> \(\frac{1}{\left(x+2\right)^2+1}\le\frac{1}{1}=1\)
Vậy GTLN của A là 1 khi x=-2
\(A=\frac{3}{4x^2-4x+5}\)
\(=\frac{3}{4x^2-4x+1+4}\)
\(=\frac{3}{\left(2x-1\right)^2+4}\)
\(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
Đặt \(A=\frac{3}{4x^2-4x+5}\)
Biến đổi : \(4x^2-4x+5\)
\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)
\(=\left(2x-1\right)^2+4\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
ĐKXĐ x thuộc R
ta thấy x^2 +1 >=0
=> \(\frac{3-4x}{x^2+1}\)>=0
dấu bằng xảy ra khi và chỉa khi
3 -4x =0
=> 4x = 3
=> x = \(\frac{3}{4}\)
vậy MINA = 0 tại x = \(\frac{3}{4}\)
*GTNN:
A=\(\frac{x^2-4x+4-x^2-1}{x^2+1}\) =\(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)
GTNN của A=-1 khi và chỉ khi x=2
*GTLN:
A=\(\frac{4x^2+4-4x^2-4x-1}{x^2+1}\) =4-\(\frac{\left(2x+1\right)}{x^2+1}\le4\)
GTLN của A=4 khi và chỉ khi x=\(\frac{-1}{2}\)
Ta có :
\(M=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\)
Ta thấy \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
Do đó \(\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
( So sánh 2 phân thức cùng tử , tử và mẫu đều dương )
Vậy \(MaxM=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
P/s : Tự làm lại đầy đủ nhé . Mình có bớt 1 số chỗ không cần thiết lắm .
A=\(\frac{3}{x^2+4x+5}\)
\(\Rightarrow\)A lớn nhất thì \(x^2+4x+5\)nhỏ nhất =1
Vậy GTLN của A= 3 với x =-2.