\(A=\frac{x^2+4x+3}{x-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

ĐKXĐ x thuộc R

ta thấy x^2 +1 >=0

=> \(\frac{3-4x}{x^2+1}\)>=0

dấu bằng xảy ra khi và chỉa khi

3 -4x =0

=> 4x = 3

=> x = \(\frac{3}{4}\)

vậy MIN= 0 tại x = \(\frac{3}{4}\)

14 tháng 6 2016

*GTNN:

A=\(\frac{x^2-4x+4-x^2-1}{x^2+1}\) =\(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\) 

GTNN của A=-1 khi và chỉ khi x=2

*GTLN:

A=\(\frac{4x^2+4-4x^2-4x-1}{x^2+1}\) =4-\(\frac{\left(2x+1\right)}{x^2+1}\le4\) 

GTLN của A=4 khi và chỉ khi x=\(\frac{-1}{2}\)

 

19 tháng 6 2016

A = \(\frac{3-4x}{x^2+1}\) <=> A.(x2 + 1) = 3 - 4x <=> Ax2 + 4x + A - 3 = 0 
Để phương thức trên tồn tại x thì 4 - A.(A-3) = -A2 + 3A +4 > 0 
<=> A2 - 3A - 4 < 0 
<=> (A+1). (A - 4) < 0 
<=> -1 < A < 4 
Vậy GTNN của A là -1 và GTLN của A là 4

6 tháng 12 2016

Đại số lớp 9

18 tháng 8 2017

\(M=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4-x^2+2x-1}{x^2+2}=\frac{2\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

\(N=\frac{4x}{x^2+2}=\frac{-\sqrt{2}x^2-2\sqrt{2}+\sqrt{2}x^2+4x+2\sqrt{2}}{x^2+2}\)

\(=\frac{-\sqrt{2}\left(x^2+2\right)+\sqrt{2}\left(x^2+2\sqrt{2}x+2\right)}{x^2+2}=-\sqrt{2}+\frac{\sqrt{2}\left(x+\sqrt{2}\right)^2}{x^2+2}\ge-\sqrt{2}\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

a)

P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015

= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010

= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010

=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)

30 tháng 1 2019

a) \(x^2+5y^2+2xy-4x-8y+2015\)

\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)

\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)

\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)

\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy.....

30 tháng 1 2019

b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)

\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy....