K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

a) GTNN

b) GTLN

c, GTNN

d,GTNN

1 tháng 2 2019

Ta có:

/x+1/>=0 với mọi x E R

=>A=/x+1/-2019 >= -2019

=> Amin=-2019

Vậy: Amin=-2019 dấu "=" xảy ra khi: x=-1

2 tháng 8 2017

a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương

15 tháng 8 2017

a) ta có : \(\left(x+1\right)^{2018}\ge0\) với mọi x \(\Rightarrow A=4-\left(x+1\right)^{2018}\le4\) với mọi x

\(\Rightarrow GTLN\) của A là 4 khi \(\left(x+1\right)^{2018}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

vậy \(GTLN\) của A là 4 khi \(x=-1\)

b) ta có : \(\left(x-3\right)^2\ge0\) với mọi x \(\Rightarrow B=\left(x-3\right)^2-2017\ge-2017\) với mọi x

\(\Rightarrow GTNN\) của B là \(-2017\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

vậy \(GTNN\) của B là \(-2017\) khi \(x=3\)

c) ta có : \(\left(x+1\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+1\right)^2+2\ge2\) với mọi x

ta có : \(C=\dfrac{4}{\left(x+1\right)^2+2}\) lớn nhất \(\Leftrightarrow\left(x+1\right)^2+2\) là số dương bé nhất

ta có : \(\left(x+1\right)^2+2\ge2\) với mọi x \(\Rightarrow\) GTNN của \(\left(x+1\right)^2+2\) là 2 khi \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

khi đó \(C=\dfrac{4}{\left(-1+1\right)^2+2}=\dfrac{4}{2}=2\)

vậy GTLN của C là 2 khi \(x=-1\)

d) ta có : \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}\ge0\forall x;y\\\left|y+1\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow D=\left(2x-y+1\right)^{2018}+\left|y+1\right|+2017\ge2017\) với mọi x ; y

\(\Rightarrow GTNN\) của D là 2017 khi \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}=0\\\left|y+1\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x-\left(-1\right)+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

vậy GTNN của D là 2017 khi \(x=y=-1\)

15 tháng 2 2020

\(A=\left|-x+8\right|-21\)

\(A=\left|-x+8\right|-21\ge-21\)

\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)

\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)

\(C=-\left|2x+8\right|-35\)

\(C=-\left|2x+8\right|-35\le-35\)

\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)

15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>

25 tháng 1 2017

\(\text{a) A = | -x + 8| - 21}\)
Vì | -x + 8| \(\le\) 0 ( với mọi x )
=> A = | -x + 8| - 21\(\ge\) -21
=> Amax = -21 khi | -x + 8| = 0 => -x + 8 = 0 => -x = -8 => x = 8
Vậy với Amin = -21 thì x = 8
b) \(B=\left|-x-17\right|+\left|y-36\right|+12\)
\(\left\{\begin{matrix}\left|-x-17\right|\ge0\\\left|y-36\right|\ge0\end{matrix}\right.\)=> \(\left|-x-17\right|+\left|y-36\right|\ge0\)
=> \(B=\left|-x-17\right|+\left|y-36\right|+12\le12\)
=> Bmin = 12 khi \(\left|-x-17\right|+\left|y-36\right|=0\)
=> \(\left\{\begin{matrix}\left|-x-17\right|=0\\\left|y-36\right|=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x-17=0\\y-36=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x=17\\y=36\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
Vậy Bmin = 12 khi \(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
c) \(C=-\left|2x-8\right|-35\)
\(-\left|2x-8\right|\ge0\)
=> \(C=-\left|2x-8\right|-35\ge-35\)
=> Cmin = -35 khi \(-\left|2x-8\right|=0\)=> \(-2x-8=0\)=>\(-2x=8\)=> \(x=4\)
Vậy Cmin = -35 khi x = 4
d) \(D=3\left(3x-12\right)^2-37\)
\(\left(3x-12\right)^2\ge0\)
=> \(3\left(3x-12\right)^2\ge0\)
=> \(D=3\left(3x-12\right)^2-37\ge-37\)
=> Dmin = -37 khi \(3\left(3x-12\right)^2=0\) => \(\left(3x-12\right)^2=0\)=> \(3x-12=0\)=> \(3x=12\)=>\(x=4\)
Vậy Dmin = -37 khi x = 4

a, A=|-x+8|-21

Vì |-x+8|>hoặc =0 với mọi x

suy ra |-x+8|-21>hoặc = -21

Dấu = xảy ra khi và chỉ khi |-x+8|=0

Khi và chỉ khi -x+8=0

Khi và chỉ khi-x=-8

khi và chỉ khi x =8

Vậy GTNN của A là -21 tại x=8

14 tháng 7 2018

\(\left|x+5\right|=5\)

<=> \(\hept{\begin{cases}x+5=5\\x+5=-5\end{cases}}\)

<=> \(\hept{\begin{cases}x=0\\x=-10\end{cases}}\)

\(\left|x+1\right|+7=10\)

<=> \(\left|x+1\right|=3\)

<=> \(\hept{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\x=-4\end{cases}}\)

\(\left|x-3\right|-6=5\)

<=> \(\left|x-3\right|=11\)

<=> \(\hept{\begin{cases}x-3=11\\x-3=-11\end{cases}}\)

<=> \(\hept{\begin{cases}x=14\\x=-8\end{cases}}\)

\(\left|x+2\right|-6\left(x-4\right)=20-6x\)

<=> \(\left|x+2\right|-6x+24=20-6x\)

<=> \(\left|x+2\right|=-4\)

<=> \(\hept{\begin{cases}x+2=-4\\x+2=4\end{cases}}\)

<=> \(\hept{\begin{cases}x=-2\\x=2\end{cases}}\)

14 tháng 7 2018

a) \(|x+5|=5\)

\(\Rightarrow\orbr{\begin{cases}x+5=5\\x+5=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-10\end{cases}}\)

Vậy x = 0 hoặc x = -10

b) \(|x+1|+7=10\)

\(\Rightarrow|x+1|=10-7\)

\(\Rightarrow|x+1|=3\)

\(\Rightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)

Vậy x = 2 hoặc x = -4

c) \(|x-3|-6=5\)

\(\Rightarrow|x-3|=5+6\)

\(\Rightarrow|x-3|=11\)

\(\Rightarrow\orbr{\begin{cases}x-3=11\\x-3=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=14\\x=-8\end{cases}}\)

Vậy x = 14 hoặc x = -8

d) \(|x+2|-6\left(x-4\right)=20-6x\)

\(\Rightarrow|x+2|-6x+24=20-6x\)

\(\Rightarrow|x+2|=20-6x-24+6x\)

\(\Rightarrow|x+2|=\left(20-24\right)+\left(-6x+6x\right)\)

\(\Rightarrow|x+2|=-4\)

Vì \(|x|\ge0\)mà \(|x+2|=-4\)

\(\Rightarrow\)Không có giá trị x thỏa mãn 

_Chúc bạn học tốt_

21 tháng 12 2016

a)\(A=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Dấu "=" xảy ra khi \(2\le x\le3\)

Vậy \(Min_A=1\) khi \(2\le x\le3\)

b)Ta thấy: \(\left|x-1\right|\ge0\)

\(\Rightarrow\left|x-1\right|-2\ge-2\)

\(\Rightarrow B\ge-2\)

Dấu "=" xảy ra khi \(x=1\)

Vậy \(Min_B=-2\) khi \(x=1\)

c)\(C=\left|x-3\right|+\left|x-4\right|=\left|x-3\right|+\left|4-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-3\right|+\left|4-x\right|\ge\left|x-3+4-x\right|=1\)

Dấu "=" xảy ra khi \(3\le x\le4\)

Vậy \(Min_C=1\) khi \(3\le x\le4\)

d)\(D=\left|x-1\right|+\left|x+5\right|+2=\left|x-1\right|+\left|-\left(x+5\right)\right|+2\)

\(=\left|x-1\right|+\left|-x-5\right|+2\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|-x-5\right|+2\ge\left|x-1+\left(-x\right)-5\right|+2=6+2=8\)

Dấu "=" xảy ra khi \(-5\le x\le1\)

Vậy \(Min_D=8\) khi \(-5\le x\le1\)

 

21 tháng 12 2016

Cảm ơn bạn đã giải giúp mình bài toán này nhé!

Bạn giải cũng na ná cô giáo mình .

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

1.

Do: $(x-3y)^2\geq 0; (2x-1)^4\geq 0$ với mọi $x,y\in\mathbb{R}$

$\Rightarrow A\geq 0+0+3=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x-3y=2x-1=0$

$\Leftrightarrow x=\frac{1}{2}; y=\frac{1}{6}$

2.

$|x-2|\geq 0$

$|3x-2y|\geq 0$

$\Rightarrow B\geq 0+0-4=-4$

Vậy $B_{\min}=-4$

Giá trị này đạt tại $x-2=3x-2y=0\Leftrightarrow x=2; y=3$

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

3.

$|x+1|\geq 0, \forall x\in\mathbb{R}$

$|y-3|\geq 0, \forall y\in\mathbb{R}$

$\Rightarrow |x+1|+|y-3|+2\geq 2$

$\Rightarrow \frac{1}{|x+1|+|y-3|+2}\leq \frac{1}{2}$

$\Rightarrow C\geq \frac{-4}{2}=-2$

Vậy $C_{\min}=-2$. Giá trị này đạt tại $x+1=y-3=0$

$\Leftrightarrow x=-1; y=3$

4. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-5|+|x-1|=|5-x|+|x-1|\geq |5-x+x-1|=4$

$\Rightarrow D=|x-5|+|x-1|+7\geq 11$

Vậy $D_{\min}=11$. Giá trị này đạt tại $(5-x)(x-1)\geq 0$

$\Leftrightarrow 5\geq x\geq 1$