Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A = (-2)(-3) - 5.|-5| + 125.\(\left(-\dfrac{1}{5}\right)^2\)
= 6 - 25 + 125.\(\dfrac{1}{25}\)
= -19 + 5
= -14
@Shine Anna
Bài 1:
\(a.\left|x\right|+\left|6\right|=\left|-27\right|\\ \Leftrightarrow\left|x\right|+6=27\\ \Leftrightarrow\left|x\right|=27-6=21\\ \Leftrightarrow\left\{{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)
a. |x||x| + |+6||+6| = |−27|
x + 6 = 27
x = 27 - 6
x = 21
Vậy x = 21
b. |−5||−5| . |x||x| = |−20|
5 . x = 20
x = 20 : 5
x 4
Vậy x = 4
c. |x| = |−17| và x > 0
|x| = 17
Vì |x| = 17
nên x = -17 hoặc 17
mà x > 0 => x = 17
Vậy x = 17 hoặc x = -17
d. |x||x| = |23||23| và x < 0
|x| = 23
Vì |x| = 23
nên x = 23 hoặc -23
mà x < 0 => x = -23
e. 12 ≤≤ |x||x| < 15
Vì 12 ≤ |x| < 15
nên x = {12; 13; 14}
Vậy x € {12; 13; 14}
f. |x| > 3
Vì |x| > 3
nên x = -2; -1; 0; 1; 2;
Vậy x € {-2; -1; 1; 2}
a. A=
{
x∈Z|−3<x≤7}
A = {-2; -1; 0; 1; 2; 3; 4; 5; 6; 7}
b. B={x∈Z|3≤|x|<7}
B = {3; 4; 5; 6}
c. C={x∈Z||x|>5}
C = {6; 7; 8; 9; ...}
Bài 1:
a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)
=>x+4/15=8/5 hoặc x+4/15=-8/5
=>x=4/3 hoặc x=-28/15
b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c: \(\Leftrightarrow\left|x-1\right|-1=1\)
=>|x-1|=2
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Bài 2:
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)
Bài 3:
a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)
Dấu '=' xảy ra khi x=-15/19
b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi x=4/7
Bài 1: Phá dấu ngoặc rồi tính:
a. \(\left(a+b+c\right)-\left(a-b+c\right)\)
\(=a+b+c-a+b-c\)
\(=\left(a-a\right)+\left(b+b\right)+\left(c-c\right)\)
\(=2b\)
b. \(\left(4x+5y\right)-\left(5x-4y-1\right)\)
\(=4x+5y-5x+4y+1\)
\(=\left(4x-5x\right)+\left(5y+4y\right)+1\)
\(=-x+9y+1\)
a ) \(\left(x+1\right)^2-3\left(x+1\right)^2=-8\)
\(\Leftrightarrow\left(x+1\right)^2.\left(1-3\right)=-8\)
\(\Leftrightarrow-2\left(x+1\right)^2=-8\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy .......
b ) \(x^2-7x=4-7\left(x-3\right)\)
\(\Leftrightarrow x^2-7x-4+7x-21=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy ........
c ) \(\left(2x+1\right)^2-3x+3=4-3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)^2-3\left(x-1\right)+3\left(x-1\right)=4\)
\(\Leftrightarrow\left(2x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=2\\2x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy......
b. x2 - 7x = 4 - 7(x-3)
=> x2 - 7x = 4 - 7x +21
=> x2 - 7x + 7x = 25
=> x2 = 25
=> \(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
c.
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
Bài 1:
Nếu biểu thức A như bạn viết, thì sau khi rút gọn, $A=54x+270$ là biểu thức có giá trị phụ thuộc vào biến.
Sửa đề:
\(A=(x+3)^3-(x+9)(x^2+27)\)
\(=(x+3)(x+3)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^2+6x+9)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^3+3x^2+6x^2+18x+9x+27)-(x^3+27x+9x^2+243)\)
\(=(x^3+9x^2+27x+27)-(x^3+27x+9x^2+243)\)
\(=27-81=-216\) là biểu thức có giá trị không phụ thuộc vào biến $x $ (đpcm)
\(B=(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2)-2(x^3-9)\)
\(=(x^3+y^3)+(x^3-y^3)-2(x^3-9)\) (hằng đẳng thức đáng nhớ)
\(=2x^3-2(x^3-9)=18\) là biểu thức có giá trị không phụ thuộc vào biến $x$ (đpcm)
Bài 2:
Sửa đề: Cho \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
CMR: \(\frac{a}{x}=\frac{b}{y}\)
Bạn lưu ý viết đề bài chính xác hơn.
-----------------------------
Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2ax.by+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2=2ay.bx\)
\(\Leftrightarrow (ay)^2-2ay.bx+(bx)^2=0\)
\(\Leftrightarrow (ay-bx)^2=0\Leftrightarrow ay=bx\Leftrightarrow \frac{a}{x}=\frac{b}{y}\)
Ta có đpcm.
Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)
Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)
a)\(A=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Dấu "=" xảy ra khi \(2\le x\le3\)
Vậy \(Min_A=1\) khi \(2\le x\le3\)
b)Ta thấy: \(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|-2\ge-2\)
\(\Rightarrow B\ge-2\)
Dấu "=" xảy ra khi \(x=1\)
Vậy \(Min_B=-2\) khi \(x=1\)
c)\(C=\left|x-3\right|+\left|x-4\right|=\left|x-3\right|+\left|4-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-3\right|+\left|4-x\right|\ge\left|x-3+4-x\right|=1\)
Dấu "=" xảy ra khi \(3\le x\le4\)
Vậy \(Min_C=1\) khi \(3\le x\le4\)
d)\(D=\left|x-1\right|+\left|x+5\right|+2=\left|x-1\right|+\left|-\left(x+5\right)\right|+2\)
\(=\left|x-1\right|+\left|-x-5\right|+2\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|-x-5\right|+2\ge\left|x-1+\left(-x\right)-5\right|+2=6+2=8\)
Dấu "=" xảy ra khi \(-5\le x\le1\)
Vậy \(Min_D=8\) khi \(-5\le x\le1\)
Cảm ơn bạn đã giải giúp mình bài toán này nhé!
Bạn giải cũng na ná cô giáo mình .