Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm m mới đúng nhé!
\(2x^2+\left(2m-1\right)x+m-1=0\\ \Delta=b^2-4ac=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)
Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = \dfrac{{ - \left( {2m - 1} \right)}}{2} = \dfrac{{ - 2m + 1}}{2}\\ {x_1}{x_2} = \dfrac{c}{a} = \dfrac{{m - 1}}{2} \end{array} \right. \)
Theo đề bài ta có:
\( 4x_{_1}^2 + 4x_2^2 + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left( {x_1^2 + x_2^2} \right) + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {\dfrac{{ - 2m + 1}}{2}} \right)}^2} - 2\left( {\dfrac{{m - 1}}{2}} \right)} \right] + 2\left( {\dfrac{{m - 1}}{2}} \right) = 1\\ \Leftrightarrow 4{m^2} - 7m + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l} m = 1\\ m = \dfrac{3}{4} \end{array} \right. \)
Vậy ...
Bài 2:
\(a)x^2+\left(m+2\right)x+m-1=0\\ \Delta=b^2-4ac=\left(m+2\right)^2-4.1.\left(m-1\right)=m^2+8\ge0\forall m\)
b) Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = - \left( {m + 2} \right) \\ {x_1}{x_2} = \dfrac{c}{a} = m - 1 \end{array} \right. \)
Theo đề bài ta có:
\( A = x_1^2 + x_2^2 - 3{x_1}{x_2}\\ A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 3{x_1}{x_2}\\ A = {\left[ { - \left( {m + 2} \right)} \right]^2} - 5\left( {m - 1} \right)\\ A = {m^2} + 4m + 4 - 5m + 5\\ A = {m^2} - m + 9\\ A = \left( {{m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4}} \right) - \dfrac{1}{4} + 9\\ A = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{{35}}{4} \ge \dfrac{{35}}{4} \)
Vậy \({A_{\min }} = \dfrac{{35}}{4} \Leftrightarrow m - \dfrac{1}{2} = 0 \Leftrightarrow m = \dfrac{1}{2} \)
\(a,4x^2-25=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(b,2x^2+9x=0\)
\(\Leftrightarrow x\left(2x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{9}{2}\end{matrix}\right.\)
\(c,x^2+x-30=0\)
\(\Leftrightarrow x^2+6x-5x-30=0\)
\(\Leftrightarrow x\left(x+6\right)-5\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
\(d,2x^2-3x-5=0\)
\(\Leftrightarrow2x^2-5x+2x-5=0\)
\(\Leftrightarrow x\left(2x-5\right)+\left(2x-5\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Lời giải:
\(A=\sqrt{x^2-4x+7}=\sqrt{x^2-4x+4+3}=\sqrt{(x-2)^2+3}\)
Vì \((x-2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=\sqrt{(x-2)^2+3}\geq \sqrt{0+3}=\sqrt{3}\)
Vậy GTNN của $A$ là $\sqrt{3}$ khi $(x-2)^2=0$ hay $x=2$
----------------
\(B=1+\sqrt{2x-x^2+1}=1+\sqrt{2-(x^2-2x+1)}\)
\(=1+\sqrt{2-(x-1)^2}\)
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 2-(x-1)^2\leq 2\)
\(\Rightarrow B=1+\sqrt{2-(x-1)^2}\leq 1+\sqrt{2}\)
Vậy GTLN của $B$ là $1+\sqrt{2}$. Dấu "=" xảy ra khi \((x-1)^2=0\) hay $x=1$
\(\Delta=\left(2m-1\right)^2-4\cdot2\cdot\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\\ =4m^2-12m+9\\ =\left(2m-3\right)^2\ge0\forall x\)
Vì pt luôn có nghiệm với mọi x , theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-2m+1\\x_1\cdot x_2=m-1\end{matrix}\right.\)
Ta có : \(4x_1^2+2x_1x_2+4x_2^2=1\)
\(\Leftrightarrow\left(4x_1^2+8x_1x_2+4x_2^2=1\right)-6x_1x_2=1\\ \Leftrightarrow4\left(x_1+x_2\right)^2-6x_1x_2=1\)
\(\Leftrightarrow4\left(-2m+1\right)^2-6\cdot\left(m-1\right)=1\\ \Leftrightarrow4\left(4m^2-4m+1\right)-6m+6=1\)
\(\Leftrightarrow16m^2-16m+4-6m+6-1=0\\ \Leftrightarrow16m^2-24m+5=0\)
\(\Delta'_m=\left(-12\right)^2-16\cdot5=144-80=64\)
\(\Rightarrow\sqrt{\Delta'_m}=8\)
Vì \(\Delta'>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow x_1=\dfrac{12+8}{16}=\dfrac{5}{4}\)
\(x_2=\dfrac{12-8}{16}=\dfrac{1}{4}\)
Vậy..............................
Ta có: \(\Delta=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Vậy phương trình luôn có 2 nghiệm.
Theo định lí Vi-et, ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-1}{-2}=\dfrac{1-2m}{2}\\x_1.x_2=\dfrac{m-1}{2}\end{matrix}\right.\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\dfrac{1-2m}{2}\right)^2-2.\dfrac{m-1}{2}=\dfrac{4m^2-4m+1}{4}-\left(m-1\right)=\dfrac{4m^2-4m+1-4m+4}{4}=\dfrac{4m^2-8m+5}{4}\)
\(\Rightarrow4x_1^2+2x_1x_2+4x_2^2=4.\dfrac{4m^2-8m+5}{4}+2.\dfrac{m-1}{2}=4m^2-8m+5+m-1=4m^2-7m+4\)
Để \(4x_1^2+2x_1x_2+4x_2^2=1\)thì\(4m^2-7m+4=1\)
\(\Leftrightarrow4m^2-7m+3=0\)
Ta có: 4-7+3=0
=> Phương trình có 2 nghiệm
\(m_1=1;m_2=\dfrac{3}{4}\)
Vậy với m=1 hoặc m=\(\dfrac{3}{4}\) thì phương trình có 2 nghiệm x1;x2 thỏa mãn\(4x_1^2+2x_1x_2+4x_2^2=1\)
Đúng thì tick nhé