Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=|x-2022|+|1-x|>=|x-2022+1-x|=2021
Dấu = xảy ra khi 1<=x<=2022
Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021
Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021
Tìm GTNN chứ nhỉ e
\(D=\left|2022-x\right|+\left|x-1\right|\ge\left|2022-x+x-1\right|=2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2022-x\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow1\le x\le2022\)
Vậy Min D=2021 \(\Leftrightarrow1\le x\le2022\)
\(A=\left(x-3,5\right)^2+1\)
Vì \(\left(x-3,5\right)^2\ge0\)
=> \(\left(x-3,5\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=3,5
\(B=\left(2x-3\right)^4-2\)
Vì \(\left(2x-3\right)^4\ge0\)
=> \(\left(2x-3\right)^4-2\ge-2\)
Vậy GTNN của B là -2 khi x=\(\frac{3}{2}\)
\(C=2-x^2=-x^2+2\)
Vì \(x^2\ge0\)
=> \(-x^2\le0\)
=>\(-x^2+2\le2\)
Vậy GTLN của C là 2 khi x=0
\(D=-\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\)
=> \(-\left(x-3\right)^2\le0\)
=>\(-\left(x-3\right)+1\le1\)
Vậy GTLN của D là 1 khi x=3
Biểu thức này không có GTLN bạn nhé.