K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2015

3x2 + 2x + 3=3.(x2+\(\frac{2}{3}\)x+1)=3.(x2+2.x.\(\frac{1}{3}\)+\(\frac{1}{9}\)+\(\frac{8}{9}\))

=3.(\(\left(x+\frac{1}{3}\right)^2+\frac{8}{9}\))

=3.\(\left(x+\frac{1}{3}\right)^2\)+\(\frac{24}{9}\)>\(\frac{24}{9}\)

Vậy GTNN của 3x2 + 2x + 3=\(\frac{24}{9}\)\(\Leftrightarrow\)\(\left(x+\frac{1}{3}\right)^2\)=0\(\Leftrightarrow\)x=\(-\frac{1}{3}\)

 

20 tháng 8 2021

\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)

\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)

Dấu ''='' xảy ra khi x = 3/4 

Vậy GTNN của A bằng 7/8 tại x = 3/4 

25 tháng 7 2016

-3x2+2x-5= -3x+2x \(-\frac{1}{3}-\frac{14}{3}\)= - ( \(\sqrt{3}x-\frac{1}{\sqrt{3}}\))2 -14/3 \(\le\)-14/3

GTLN là -14/3 khi và chỉ khi \(\sqrt{3}x-\frac{1}{\sqrt{3}}\)=0 tương đương với x = \(\frac{1}{3}\)

4x2-70x+19 = 4x2-70x +\(\frac{1225}{4}\)-287.25= (2x-\(\frac{35}{2}\))2-287.25\(\ge\)-287.25

GTNN là -287.25 khi vài chỉ khi 2x-\(\frac{35}{2}\)=0 tương đương với x=\(\frac{35}{4}\)

Nhớ chọn mik nha :)

25 tháng 7 2016

mọi ng giúp mik đi

làm ơn đó

22 tháng 10 2020

A = 3x2 - 5x + 7

= 3( x2 - 5/3x + 25/36 ) + 59/12

= 3( x - 5/6 )2 + 59/12 ≥ 59/12 ∀ x

Dấu "=" xảy ra khi x = 5/6

=> MinA = 59/12 <=> x = 5/6

B mình chia thành hai trường hợp nhé ;-; trúng cái nào thì trúng :)

B = ( x - 1 )( x - 3 ) + 11

= x2 - 4x + 3 + 11

= ( x2 - 4x + 4 ) + 10

= ( x - 2 )2 + 10 ≥ 10 ∀ x 

Dấu "=" xảy ra khi x = 2

=> MinB = 10 <=> x = 2

B = ( x - 1 )( x - 3 ) - 11

= x2 - 4x + 3 - 11

= ( x2 - 4x + 4 ) - 12

= ( x - 2 )2 - 12 ≥ -12 ∀ x

Dấu "=" xảy ra khi x = 2

=> MinB = -12 <=> x = 2

C = ( x - 3 )2 + ( x - 2 )2

= x2 - 6x + 9 + x2 - 4x + 4

= 2x2 - 10x + 13

= 2( x2 - 5x + 25/4 ) + 1/2

= 2( x - 5/2 )2 + 1/2 ≥ 1/2 ∀ x

Dấu "=" xảy ra khi x = 5/2

=> MinC = 1/2 <=> x = 5/2

16 tháng 8 2019

\(3x^2-2x=3\left(x^2-\frac{2}{3}x\right)=3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}-\frac{1}{9}\right)\)

\(=3\left[\left(x-\frac{1}{3}\right)^2-\frac{1}{9}\right]=3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge\frac{-1}{3}\)

Vậy GTNN của bt là \(\frac{-1}{3}\Leftrightarrow x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)