Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có \(x^2\ge0\)với mọi giá trị của x
=> \(x^2+5x\ge0\)với mọi giá trị của x
=> \(x^2+5x-17\ge0-17=-17\)với mọi giá trị của x.
Dấu "=" xảy ra khi \(x^2+5x=0\)
=> \(x\left(x+5\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy f (x) có GTNN là -17 khi \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\).
1)
\(A=-5x^2-4x+1\)
\(A=-5\left(x^2+\dfrac{4}{5}x-\dfrac{1}{5}\right)\)
\(A=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}-\dfrac{9}{25}\right)\)
\(A=-5\left[\left(x+\dfrac{2}{5}\right)^2-\dfrac{9}{25}\right]\)
\(A=-\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{25}\le\dfrac{9}{25}\)
Dấu "=" xảy ra khi:
\(x=-\dfrac{2}{5}\)
2)
\(A=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)\)
\(A=\left[\left(x-1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-5\right)\right]\)
\(A=\left[x\left(x-8\right)-1\left(x-8\right)\right]\left[x\left(x-5\right)-4\left(x-5\right)\right]\)
\(A=\left(x^2-8x-x+8\right)\left(x^2-5x-4x+20\right)\)
\(A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)\)
\(A=\left(x^2-9x+14-6\right)\left(x^2-9x+14+6\right)\)
\(A=\left(x^2-9x+14\right)^2-36\ge-36\)
Dấu "=" xảy ra khi:
\(x^2-9x+14=0\)
\(\Leftrightarrow x^2-2x-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)
Vậy...
\(A=−5x^2−4x+1 \)
=\(-5\left(x^2+\dfrac{4}{5}x-\dfrac{1}{5}\right)\)=\(-5\left(x^2+\dfrac{4}{5}+\dfrac{4}{25}-\dfrac{9}{25}\right)\)
=\(-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\)
Với mọi giá trị của x thì \(-5\left(x+\dfrac{2}{5}\right)^2\)nhỏ hơn hoặc bằng 0
=>\(\dfrac{9}{5}-5\left(x+\dfrac{2}{5}\right)^2\)nhỏ hơn hoặc bằng \(\dfrac{9}{5}\)
Hay Anhỏ hơn hoặc bằng \(\dfrac{9}{5}\)
Để A\(=\dfrac{9}{5}\)thì \(\left(x+\dfrac{2}{5}\right)^2=0\)
=>.\(x+\dfrac{2}{5}=0\)=>\(x=-\dfrac{2}{5}\)
Vậy ....
Theo mk câu 1 bác kia giải sai nhé
\(P=\frac{2019}{4x^2+4x+2020}\)
Để \(P\)max \(\Leftrightarrow4x^2+4x+2020\)min
Ta có : \(4x^2+4x+2020=4\left(x+\frac{1}{2}\right)^2+2019\ge2019\)
Dấu " = " xảy ra : \(\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(Max_P=1\Leftrightarrow x=-\frac{1}{2}\)
Tiếp tục tìm \(Max\), ta có:
\(A=\frac{4x^2+4-4x^2-4x-1}{x^2+1}=\frac{4\left(x^2+1\right)}{x^2+1}-\frac{\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)với mọi \(x\)
Dấu \(''=''\)xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Vậy, \(MaxA=4\Leftrightarrow x=-\frac{1}{2}\)
Ta có: \(D=-5x^2-4x+1=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)=-5\left(x+\frac{2}{5}\right)^2+5\ge5\forall x\)
Hay : \(D\ge5\forall x\)
=> Min D = 5 tại \(x=-\frac{2}{5}\)
=.= hk tốt!!
giá trị nhỏ nhất chứ hình như sai đề
\(giải:\)
\(-4x^2+5x+1\)
\(=-4x^2+5x-\frac{25}{16}+\frac{41}{16}\)
\(=\left(-4x^2+5x-\frac{25}{16}\right)+\frac{41}{16}\)
\(=-\left(4x^2-5x+\frac{25}{16}\right)+\frac{41}{16}\)
\(=-\left[\left(2x\right)^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{41}{16}\)
\(=-\left(2x-\frac{5}{4}\right)^2+\frac{41}{16}\le\frac{41}{16}\)
\(GTLN\) \(của\)\(-4x^2+5x+1=\frac{41}{16}\)\(đạt\)\(khi\)\(-\left(2x-\frac{5}{4}\right)^2=0\)
\(\Leftrightarrow2x-\frac{5}{4}=0\)
\(\Leftrightarrow2x=\frac{5}{4}\Leftrightarrow x=\frac{5}{8}\)
vậy gtln của -4x^2+5x+1 bằng 41/16 tại x=5/8