Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)
ĐK : x ≠ ±1 ; x ≠ 0 ; x ≠ -2019
\(=\left(\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\frac{x^2-1}{x^2-1}\times\frac{x+2019}{x}=\frac{x+2019}{x}\)
b. \(A=\frac{x+2019}{x}=1+\frac{2019}{x}\) đạt giá trị lớn nhất
<=> \(\frac{2019}{x}\) đạt giá trị lớn nhất
<=> \(\hept{\begin{cases}x>0\\x\in Z\end{cases}}\) và x đạt giá trị bé nhất
<=> x = 1
Khi đó A = 2020
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
\(A=\frac{1}{x^2+4x+5}=\frac{1}{\left(x+2\right)^2+1}\)
Vì: \(\left(x+2\right)^2\ge0\)
=> \(\left(x+2\right)^2+1\ge1\)
=> \(\frac{1}{\left(x+2\right)^2+1}\le\frac{1}{1}=1\)
Vậy GTLN của A là 1 khi x=-2
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
A=\(\frac{3}{x^2+4x+5}\)
\(\Rightarrow\)A lớn nhất thì \(x^2+4x+5\)nhỏ nhất =1
Vậy GTLN của A= 3 với x =-2.
\(A=\frac{5}{x^2-4x+2019}=\frac{5}{\left(x-2\right)^2+2015}\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+2015\ge2015\forall x\\ \Rightarrow\frac{5}{\left(x-2\right)^2+2015}\le\frac{5}{2015}=\frac{1}{403}\forall x\\ \Leftrightarrow A\le\frac{1}{403}\forall x\)
\(\Rightarrow\max\limits_A=\frac{1}{403}\)
Dấu "=" xảy ra: \(\Leftrightarrow\left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)