Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình hỏi câu a của bạn phân số đầu tiên bạn vứt mất x ở mẫu của mik đâu rồi
Lời giải:
ĐK: $x\geq 0; x\neq 1$
$P=\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{1}{\sqrt{x}-1}=-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x-1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{x+\sqrt{x}+1-(x+2)-(x-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow Q=\frac{2(x+\sqrt{x}+1)}{-\sqrt{x}}+\sqrt{x}$
$=-\left(\sqrt{x}+\frac{2}{\sqrt{x}}+2\right)$
Dễ thấy $\sqrt{x}+\frac{2}{\sqrt{x}}+2\geq 2\sqrt{2}+2$ theo BĐT Cô-si
$\Rightarrow Q\leq -(2\sqrt{2}+2)$ hay $Q_{\max}=-(2\sqrt{2}+2)$
a/ Ta có
P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)
= \(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)
\(N=6\sqrt{x}-x-1=8-\left(x-6\sqrt{x}+9\right)=8-\left(\sqrt{x}-3\right)^2\le8\)
Dấu "=" xảy ra <=> \(\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
Vậy Max(N)=8
\(P=\frac{1}{x-\sqrt{x}+1}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
Vậy Max(P)=4/3
\(\sqrt{x-1}\ge0,\forall x\inℝ\Rightarrow\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Max (M)=\(\sqrt{3}\)\(\Leftrightarrow x=1\)
\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)
học tốt
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)
\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)
Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)
a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)
Đặt \(\sqrt{x}=a\left(a\ge0\right)\)
\(M=\frac{a+1}{a^2+a+1}=\frac{a^2+a+1-a^2}{a^2+a+1}=1-\frac{a^2}{a^2+a+1}\le1\)
"=" xảy ra <=> a = 0 hay x = 0