K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

a) đk: \(x\ge0;x\ne1\)

b) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\div\frac{\sqrt{x}-1}{2}\)

\(A=\frac{x+2+\left(\sqrt{x}-1\right)\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{\sqrt{x}-1}{2}\)

\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)

\(A=\frac{2\left(x-2\sqrt{x}+1\right)}{\left(x-2\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{2}{x+\sqrt{x}+1}\)

3 tháng 9 2020

c) Ta có: \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) 

=> \(\frac{2}{x+\sqrt{x}+1}>0\left(\forall x\ne1\right)\)

d) Ta chỉ có thể tìm GTLN thôi

Để A đạt GTLN => \(x+\sqrt{x}+1\) phải đạt GTNN

Dấu "=" xảy ra khi: \(x=0\)

Vậy Max(A) = 2 khi x = 0

1 tháng 3 2022

6 nhé 

@@@@@@@@@@@@ 

k cho mk 

HT